

Схема теплоснабжения муниципального образования Раздольненский район Республики Крым на период 2016-2031 гг.

Обосновывающие материалы

Глава З

Электронная модель системы теплоснабжения МО «Раздольненский район»

Приложение 4. Инструкция по применению Zulu Thermo

023.CTC.016.008.003.004

Разработчик

НП «Энергоэффективный город»

Исполнительный директор Силинский В. П.

Силинскии Д. П.

«___»____2016 г.

Содержание

1. Введение	1
1.1. Назначение документа	1
1.2. Общие сведения о программе	1
1.2.1. Описание основных характеристик и особенностей	1
1.2.2. Взаимодействие с другими программами	2
1.2.3. Сведения о технических средствах и операционных системах	3
1.3. Возможности программы	4
2. Элементы модели тепловой сети	9
2.1. Введение	9
2.2. Источник	9
2.3. Участок	12
2.3.1. Начало и конец участка	13
2.3.2. Направление	13
2.3.3. Вспомогательный участок	14
2.4. Потребитель	14
2.4.1. Потребитель	14
2.4.2. Обобшенный потребитель	
2.5. Узел	
2.5.1. Простой vзеп	
2.6 Пентральный тепловой пункт (ПТП)	17
2.6.1 Вспомогательный участок для ИГП	19
2.6.1. Беномогательный у цеток для цттт	19
2.8. Залвижка	17
2.9. Перемычка	22
2.10. Просселирующие устройства	25
2.10. Дроссельная шайба	25
2.10.1 дроссельная шаноа 2.10.2 Регулятор располагаемого напора	25
2.10.2. Perylation pacyona	20
2.10.5. Teryinitop paezoda	27
2.10.4. Гегуллор давления	27
3.1 Вредение	29
3.1. Въсдение тапларай сети на карта	29
3.2.1 Схематинеское изображение тепловой сети	30
3.2.1. Crematinactic usoopartenue tensiobon certa	30
3.2.2. У прощенное и детальное изображение сети	31
3.4. Созлание слоя теплорой сети	31
3.4.1 Файны слоя тепловых сетей	32
3.5 Sarnyara enog p ranty	36
4. Стристира анод	20
4. CIPyKiypa Choke aparenting a computation and 4.1	
4.1. Compute the description of the provention $4.1.1$ Computer the provention $4.1.1$ Computer the provention of the p	30 40
4.1.1. Сохрансние изменении и выход	40 //
4.1.2. Символы	40
4.1.5. Dasbi данных	45
4.2. Типы и режимы объектов сети	40
4.2. Реминии объектов	4 0 50
	32 52
4.5.1. Создание нового режима объекта	ככ דד
4.5.2. Изменение размеров символов тепловой сети	J / 50
4.5.5. ИЗменение внешнего вида символов тепловой сети	38
4.5.4. удаление режима	60

4.3.5. Импорт типов и режимов	60
4.3.6. Пример создания режима для уже существующего типа «Узел»	C1
	61
4.4. Печать объектов, входящих в структуру слоя	
5. Ввод объектов сети	
5.1. Включение режима редактирования слоя	65
5.2. Последовательность действий при вводе	66
5.2.1. Ввод узловых объектов сети	
5.2.2. Ввод тепловой сети с помощью участка	
6. Редактирование сети	72
6.1. Редактирование одиночных объектов	72
6.1.1. Перемещение объекта	72
6.1.2. Поворот символьного объекта	74
6.1.3. Дублирование одиночного объекта	74
6.1.4. Смена типа или режима объекта	75
6.1.5. Смена направления участка тепловой сети	76
6.1.6. Удаление объекта	76
6.1.7. Разбиение участка на два узловым объектом (Ввод объекта на	
существующую сеть)	77
6.1.8. Объединение последовательно соединенных участков (Удалени	ie
объекта с нанесенной сети)	77
6.2. Редактирование элементов объекта	78
6.2.1. Перемещение узла	78
6.2.2. Перемещение отрезка	79
6.2.3. Добавление точки перелома	80
6.2.4. Удаление точки перелома	80
6.2.5. Перепривязка участка	
6.3. Контроль ошибок при вводе	82
7. Настройки расчетов и вкладка Сервис	
7.1. Настройка расчета тепловых потерь	
7.2. Настройка расчета потерь напора	
7.3. Выбор и настройка параметров теплоносителя	
7.4. Настройка расчета утечек	
7.5. Настройка протоколирования отчета	
7.6. Настройка раскраски	
7.7. Настройка расчета ГВС	
7.7.1. Залание способа вычисления пиркуляционного расхода волы на	1
FBC	
7.8 Настройка использования исходных данных	93
79 Настройка НАЅР	94
7 10 Настройка используемых единиц измерения	94
7.11. Вклалка Сервис	95
8 Напалочный расчет	97
8.1 Пель расчета	97
8.2. Знакомство с панелью расчетов	97
8.3. Sanuck nacuera	98
0. Поверонни и расцет	102
9. Поверочный расчет	102
7.1. Цель расчета	102
7.2. SHAKUMUTBU U HAHEJIBIU PAUYETUB	102
7.3. Запуск расчета	103
10. Конструкторский расчет	107
10.1. цель расчета	107

10.2. Знакомство с панелью расчетов	107
10.3. Запуск расчета	108
10.3.1. Последовательность выполнения расчета	110
10.4. Пример конструкторского расчета	111
11. Расчет температурного графика	115
11.1. Цель расчета	115
11.2. Знакомство с панелью расчетов	115
11.3. Запуск расчета	116
11.4. Просмотр результатов расчета	118
11.5. Сохранение результатов расчета температурного графика	119
12. Расчет годовых нормируемых потерь через тепловую изоляцию	121
12.1. Цель расчета	121
12.2. Знакомство с панелью расчетов	121
12.3. Запуск расчета	122
12.4. Экспорт в ЕХСЕL	126
13. Возможные ошибки расчетов	127
13.1. Ошибки по топологии сети	127
13.2. Ошибки по семантической информации	128
13.3. Ошибки по результатам расчета	129
13.4. Остальные ощибки	133
14. Коммутационные залачи	134
14.1. Цель расчета	134
14.2. Знакомство с окном Коммутационные залачи	134
14.3. Запуск расчета	135
14.3.1. Анализ переключений	136
14.3.2. Поиск в слое-подложке	139
14.4. Настройки	140
14.5. Работа со списком объектов	145
14.6. Просмотр результатов расчета	146
14.6.1. Навигация	146
14.6.2. Печать отчета	147
14.6.3. Экспорт в MS Excel	148
14.6.4. Экспорт в HTML	148
15. Пьезометрический график	150
15.1. Знакомство с окном пьезографика	150
15.2. Построение пьезометрического графика	151
15.2.1. Панель инструментов пьезометрического графика	153
15.3. Сохранение пьезометрического графика	153
15.4. Сохранение пьезометрического графика в Ms Word и Excel	154
15.5. Экспорт пьезометрического графика	156
15.6. Совмещение пьезометрических графиков	156
15.7. Быстрая настройка пьезометрического графика	157
15.8. Создание нового шаблона пьезометрического графика	159
15.8.1. Раздел График	161
15.8.2. Раздел Кривые	163
15.8.3. Раздел таблица	168
16. Исходные данные для выполнения инженерных расчетов	172
16.1. Основные исходные данные для выполнения наладочного и	
поверочного расчетов	172
16.2. Занесение данных по элементам сети	173
16.2.1. Источник	173
16.2.2. Потребитель	176

	102
16.2.4. Обабизация в написати (ЦПП)	.183
16.2.4. Обоощенный потребитель	. 189
16.2.5. У часток тепловой сети	. 191
16.2.6. Насосная станция	. 193
16.2.7. Вычисляемая дроссельная шаиоа	. 194
16.2.8. устанавливаемая дроссельная шаиоа	. 195
16.2.9. Регулятор давления	. 196
16.2.10. Регулятор располагаемого напора	. 197
16.2.11. Регулятор расхода	. 197
16.3. Испытательные параметры теплоооменного аппарата	. 197
16.3.1. Схемы с параллельным подключением теплоооменника на	100
	. 199
16.4. Дополнительные исходные данные для расчета с учетом тепловых	200
потерь	.200
16.4.1. Расчет по нормированным потерям	.201
16.4.2. Расчет тепловых потерь с учетом фактической изоляции	.202
16.5. Исходные данные для выполнения конструкторского расчета	.204
16.5.1. По потребителям	. 204
16.5.2. По участкам	. 205
16.6. Исходные данные для построения температурного графика	.206
16.7. Исходные данные для расчета нормативных потерь тепла за год	. 207
17. Отображение семантической информации на карте	. 209
18. Автоматическое занесение исходных данных	.210
18.1. Автоматическое занесение длины с карты	. 210
18.2. Автоматическое занесение начала и конца участков	. 211
18.3. Автоматическое занесение геодезических отметок объектов сети со	
слоя рельефа	. 213
19. Раскраска сети	. 215
19.1. Раскраска с помощью встроенных фильтров	.216
19.1.1. Запуск раскраски	.216
19.1.2. Настройки раскраски	.217
19.2. Раскраска с помощью собственного фильтра	.218
19.2.1. Создание нового тематического файла	. 218
19.2.2. Редактирование тематического файла	. 220
19.2.3. Подключение тематической окраски	. 221
19.2.4. Обновление тематической окраски	. 221
19.2.5. Пример создания тематического фильтра	. 222
20. Справочники	. 225
20.1. Справочник по трубам	. 225
20.1.1. Открытие справочника по трубам	. 226
20.1.2. Выбор материала трубопровода	. 228
20.1.3. Добавление нового диаметра к существующему материалу	. 229
20.1.4. Удаление диаметра	. 230
20.1.5. Добавление нового материала в справочник	.230
20.1.6. Удаление материала из справочника	.231
20.2. Справочник по насосам	. 231
20.2.1. Открытие справочника по насосам	. 233
20.2.2. Выбор марки насоса из справочника	. 234
20.2.3. Добавление марки в справочник	. 235
20.3. Справочник по запорной арматуре	. 237
20.3.1. Открытие справочника по запорной арматуре	. 239
20.3.2. Выбор марки запорной арматуры из справочника	. 240

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

20.3.3. Добавление марки в справочник	241
20.3.4. Импорт данных по запорным устройствам	242
20.3.5. Экспорт данных по запорным устройствам	243
20.3.6. Удаление запорного устройства из справочника	243
20.4. Справочник по теплоносителям	243
20.4.1. Открытие справочника	243
20.4.2. Добавление нового теплоносителя в справочник	245
20.4.3. Редактирование существующего теплоносителя	245
20.4.4. Удаление теплоносителя из справочника	245
20.4.5. Переименование теплоносителя	246
20.5. Справочник по местным сопротивлениям	246
20.5.1. Открытие справочника по местным сопротивлениям	246
20.5.2. Занесение местных сопротивлений	248
21. Таблицы баз данных элементов тепловой сети	250
21.1. Источник тепловой сети	250
21.2. Узел тепловой сети	256
21.3. Потребитель	258
21.4. Насосная станция	274
21.5. Запорная арматура	278
21.6. Участок тепловой сети	280
21.7. Дросселирующий узел	291
21.8. Пентральный тепловой пункт	
21.9. Перемычка	
21.10. Обобшенный потребитель	
22. Полбор оборулования Danfoss	
22.1. Полбор шаровых кранов фирмы Danfoss	
22.1.1. Открытие окна полбора	
22.1.2. Добавление полей в базу данных	
22.1.3. Занесение исхолных ланных	
22.1.4. Полбор ШК	
22.1.5. Очистка полей по ШК	320
22.1.6. Открытие справочника ШК Danfoss	321
22.1.7. Пример полбора шаровых кранов Danfoss	
22.1.8. Справочная информация по полям ШК Danfoss	325
22.2. Полбор регуляторов прямого лействия фирмы Danfoss	
22.2.1. Открытие окна полбора	327
22.2.1. Открытие окна подоора	327
22.2.2. Добавление полен в базу данных полбора 22.2.2. Настройка исходных данных для полбора	328
22.2.5. Пастропка неходных данных для подоора	329
22.2.1. Подоор регуляторов давления.	331
22.2.5. С тистка полон по регуляторая 22.2.6. Пример полбора регуляторов Danfoss	332
22.2.0. Пример подоора регуляторов Damoss	335
22.2.7. Сприво ния ниформация по полям регуляторов Вингово	337
23.1 Ввеление	337
23.7. Высдение пасчетных пасхолов теплоносителя	337
24. Как получить обновление?	346
А Схемы полключения	348
А 1 Расчетные схемы присоелинения потребителей	348
A 1.1 Cxema No 1	348
А 1 2 Схема № 2	349
А 1 3 Схема № 3	349
А 1.4 Схема № 4	349

	A 1.5 Course Ma 5	240
	A.1.5. Cxema № 5	349
	A.1.6. CXeMa № 6	350
	А.1.7. Схема № 7	350
	А.1.8. Схема № 8	350
	А.1.9. Схема № 9	351
	А.1.10. Схема № 10	351
	А.1.11. Схема № 11	.351
	А.1.12. Схема № 12	352
	А.1.13. Схема № 13	352
	А.1.14. Схема № 14	352
	А.1.15. Схема № 15	353
	А.1.16. Схема № 16	353
	А.1.17. Схема № 17	353
	А.1.18. Схема № 18	354
	А.1.19. Схема № 19	354
	А.1.20. Схема № 20	354
	А.1.21. Схема № 21	355
	А.1.22. Схема № 22	355
	A.1.23. Cxema № 23	355
	A.1.24. Cxema № 24	356
	A.1.25. Cxema № 25	356
	А 1 26 Схема № 26	356
	А 1 27 Схема № 27	356
	А 1 28 Схема № 28	357
	А 1 29 Схема № 29	357
	A 1 30 Cxema № 30	357
	A 1 31 Cxema No 31	358
	$\Delta = 1.32$ C VEMA No 32	358
	$\Delta = 1.33$ C VEMA No 33	358
	$\Delta = 1.32$ C VEMA No. 32	359
Δ 2		350
n.2.	А 2.1. Схема № 1	350
	A.2.1. CXCMA $M \ge 1$	350
	A.2.2. CXCMA \mathbb{N} 2	260
	A.2.4. Cheve Met	260
	A.2.4. CXeMa № 4	300
	A.2.5. CxeMa № 5	360
	A.2.6. CXeMa № 6	361
	A.2. /. Cxema № /	361
	A.2.8. Cxema № 8	361
	A.2.9. Cxema № 9	361
	A.2.10. Схема № 10	362
	A.2.11. Cxema № 11	.362
	A.2.12. Cxema №12	362
	А.2.13. Схема № 13	363
	А.2.14. Схема № 14	363
	А.2.15. Схема № 15	363
	А.2.16. Схема № 16	364
	А.2.17. Схема № 17	364
	А.2.18. Схема № 18	364
	А.2.19. Схема № 19	365
	А.2.20. Схема № 20	365
	А.2.21. Схема № 21	365

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

А.2.22. Схема № 22	. 366
А.2.23. Схема № 23	. 366
А.2.24. Схема № 24	. 366
А.2.25. Схема № 25	. 366
А.2.26. Схема № 26	. 367
А.2.27. Схема № 27	. 367
А.2.28. Схема № 28	. 367
А.2.29. Схема №29	. 368
В. Нормы тепловых потерь	. 369
В.1. 1959 года - Нормы проектирования тепловой изоляции для	
трубопроводов и оборудования электростанций и тепловых сетей. М.:	
Госстройиздат, 1959	. 369
В.2. 1988 года - СНиП 2.04.14-88* Тепловая изоляция оборудования и	
трубопроводов	. 371
В.3. 1997 года - Изменения внесенные в СНиП 2.04.14-88* постановлением	
Госстроя России от 29.12.97 г. № 18-80	. 381
В.4. 2003 года - СНиП 41-03-2003 Тепловая изоляция оборудования и	
трубопроводов	. 388
B.5. Украинские нормы от 1994 года КТМ 204	. 396
С. Технические характеристики стальных трубопроводов для тепловой сети	407
D. Коэффициенты местных сопротивлений на участке трубопровода	409
Е. Основные типы сборных железобетонных каналов для тепловой сети	411

Глава 1. Введение

1.1. Назначение документа

Данное руководство предназначено для инженерно-технического персонала, выполняющего тепло-гидравлические расчеты систем теплоснабжения на программе ZuluThermo. При работе с программой не требуются глубокие знания по программированию, достаточно четко и грамотно сформулировать свои цели и с помощью, имеющихся в ZuluThermo инструментов решить поставленные задачи.

В руководстве подробно описываются основные функции ZuluThermo, а также основные расчетные зависимости. Настоящий документ дает возможность самостоятельно изучить и правильно использовать разнообразные функции при решении инженерных задач. В конце многих разделов приведены практические примеры, которые позволяют быстрее освоить и запомнить разнообразные функции.

В связи с постоянным усовершенствованием ZuluThermo данное описание может быть неполным или в отдельных пунктах расходиться с тем, что пользователь видит на экране. В этом случае рекомендуется просматривать справку по выбранной команде непосредственно в программе, нажав кнопку Справка (?) или на сайте http://www.politerm.com.ru/. Успехов в обучении и работе.

1.2. Общие сведения о программе

Наименование и обозначение программы – ZuluThermo.

Средством разработки ZuluThermo является Microsoft Visual C++TM.

Программа ZuluThermo предназначена для выполнения инженерных расчетов системы централизованного теплоснабжения.

1.2.1. Описание основных характеристик и особенностей

Система обладает широкими возможностями:

- Проводить технологические расчеты инженерных коммуникаций;
- создавать и использовать библиотеку графических образов элементов систем теплоснабжения и режимов их функционирования;
- создавать расчетные схемы инженерных коммуникаций с автоматическим формированием топологии сети и соответствующих баз данных;
- создавать входные и выходные формы представления информации;
- изменять топологию сетей и режимы работы ее элементов; решать различные топологические задачи.

Ограничение области применения

• Только для расчета наружных тепловых сетей;

- ограничивается заданными схемами присоединения потребителей и центральных тепловых пунктов;
- ограничивается стандартным набором элементов системы централизованного теплоснабжения;
- ограничивается расчетом стационарных режимов работы системы.

1.2.2. Взаимодействие с другими программами

Объектная модель Zulu открыта для расширения приложениями пользователя через механизм COM. Zulu предоставляет возможность использовать и расширять свою функциональность двумя способами - это написание модулей расширения системы (plug-ins) или использование ActiveX компонентов в своих готовых приложениях.

1.2.2.1. Создание модулей расширения системы(plug-ins

ГИС Zulu позволяет расширять свою функциональность путем подключения к системе дополнительных модулей - plug-ins. Модули расширения создаются в виде ActiveX DLL с использованием любой среды разработки, позволяющей их создавать (Visual C ++TM, Visual BasicTM, DelphiTM, C++ BuilderTM и т.д.).

Модуль пользователя через механизм СОМ получает:

- доступ к объектам и событиям системы;
- возможность отрисовки своей информации в окнах системы;
- возможность внедрять в систему свои меню, кнопки, разделы в строке состояния и т.д.

1.2.2.2. ZuluNetTools

ZuluNetTools - библиотека ActiveX компонентов. Предоставляет возможность разработчикам программного обеспечения включать в свои приложения гидравлические расчеты тепловых, водопроводных, паровых и газовых сетей, реализованные в расчетных модулях **ZuluThermo**, **ZuluHydro**, **ZuluSteam** и **ZuluGaz**, в средах разработки приложений, поддерживающих модель COM (Microsoft Visual C++, Microsoft Visual Basic, Borland Delphi, Borland C++Builder и т.д.)

Основные возможности

- программное задание топологической модели инженерной сети
- программное задание исходных данных для расчетов
- подключение инженерных сетей в формате ГИС Zulu
- запуск расчетов тепловых сетей ZuluThermo
- запуск расчетов водопроводных сетей **ZuluHydro**
- запуск расчетов паровых сетей ZuluSteam
- запуск расчетов газовых сетей ZuluGaz
- программное чтение результатов расчетов и кодов ошибок

- вывод протокола расчетов и списка ошибок
- построение пьезографиков

Более подробная информация доступна на сайте разработчиков ZuluNetTools [http:// politerm.com.ru/zulunettools/index.htm]

1.2.2.3. Экспорт и импорт

ZuluThermo на основе ГИС позволяет экспортировать информацию в следующие обменные форматы:

- DXF;
- MIF/MID;
- BMP;
- Shape SHP;
- MS Excel (xls);
- Html.

А также импортировать информацию из форматов:

- DXF;
- MIF/MID;
- Shape SHP;
- Metafile WMF.

1.2.3. Сведения о технических средствах и операционных системах

Геоинформационная система Zulu и программа ZuluThermo работают в операционных системах Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7

Минимальные требования для ГИС Zulu:

- Процессор класса Pentium 350МГц;
- Видеоадаптер Super VGA (800 x 600);
- Объем памяти ОЗУ 256Мб;
- 150Мб свободного места на жестком диске;
- Microsoft WindowsTMXP.

Рекомендуемые требования для ГИС Zulu:

- Процессор класса Pentium 2.0ГГц и выше;
- Видеоадаптер Super VGA (1280 x 1024), TrueColor (16,7 млн. цветов);

- Объем памяти ОЗУ 2ГБ;
- 150Мб свободного места на жестком диске;
- Microsoft WindowsTMXP, Windows Vista или Windows 7.

1.3. Возможности программы

Основой ZuluThermo является географическая информационная система (ГИС) Zulu. При помощи ГИС можно создать карту города (населенного пункта) и нанести на неё тепловые сети. ZuluThermo позволяет рассчитывать системы централизованного теплоснабжения большого объема и любой сложности.

Расчету подлежат *тупиковые* и *кольцевые* сети (количество колец в сети неограниченно), а также двух, трех, четырехтрубные или многотрубные системы теплоснабжения, в том числе с повысительными насосными станциями и дросселирующими устройствами, работающие от одного или нескольких источников.

Программа предусматривает выполнение теплогидравлического расчета системы централизованного теплоснабжения с потребителями, подключенными к тепловой сети по различным схемам. Используются 34 схемных решения подключения потребителей, а также 29 схем присоединения ЦТП. Вышеприведенные схемы подключения потребителей подробно рассматриваются в соответствующих разделах: « Расчетные схемы присоединения абонентских вводов (систем отопления, вентиляции и горячего водоснабжения) к тепловой сети» и раздел «Расчетные схемы присоединения центральных тепловых пунктов к тепловой сети»

Расчет систем теплоснабжения может производиться с учетом утечек из тепловой сети и систем теплопотребления, а также тепловых потерь в трубопроводах тепловой сети. Расчет тепловых потерь ведется либо по нормативным потерям, либо по фактическому состоянию изоляции.

Результаты расчетов могут быть экспортированы в MS Excel, наглядно представлены с помощью тематической раскраски и пьезометрических графиков. Картографический материал и схема тепловых сетей может быть оформлена в виде документа с использованием макета печати.

Состав расчетов

- Наладочный расчет;
- Поверочный расчет;
- Конструкторский расчет;
- Расчет температурного графика;
- Построение пьезометрического графика;
- Коммутационные задачи;
- Расчет нормативных потерь тепла через изоляцию.

Наладочный расчет

Целью наладочного расчета является качественное обеспечение всех потребителей, подключенных к тепловой сети необходимым количеством тепловой энергии и сетевой

воды, при оптимальном режиме работы системы централизованного теплоснабжения в целом.

В результате наладочного расчета определяются номера элеваторов, диаметры сопел и дросселирующих устройств, а также места их установки.

Расчет проводится с учетом различных схем присоединения потребителей к тепловой сети и степени автоматизации подключенных тепловых нагрузок. При этом на потребителях могут устанавливаться регуляторы расхода, нагрузки и температуры. На тепловой сети могут быть установлены насосные станции, регуляторы давления, регуляторы расхода, кустовые шайбы и перемычки.

Поверочный расчет

Целью поверочного расчета является определение фактических расходов теплоносителя на участках тепловой сети и у потребителей, а также количестве тепловой энергии получаемой потребителем при заданной температуре воды в подающем трубопроводе и располагаемом напоре на источнике.

Созданная математическая имитационная модель системы теплоснабжения, служащая для решения поверочной задачи, позволяет анализировать гидравлический и тепловой режим работы, а также прогнозировать изменение температуры внутреннего воздуха у потребителей. Расчеты могут проводиться при различных исходных данных, в том числе аварийных ситуациях, например, отключении отдельных участков тепловой сети, передачи воды и тепловой энергии от одного источника к другому по одному из трубопроводов и т.д. В качестве теплоносителя может использоваться вода, антифриз или этиленгликоль.

Расчёт тепловых сетей можно проводить с учётом:

- утечек из тепловой сети и систем теплопотребления;
- тепловых потерь в трубопроводах тепловой сети;
- фактически установленного оборудования на абонентских вводах и тепловых сетях.

Поверочный расчет позволяет рассчитать любую аварию на трубопроводах тепловой сети и источнике теплоснабжения. В результате расчета определяются расходы и потери напора в трубопроводах, напоры в узлах сети, в том числе располагаемые напоры у потребителей, температура теплоносителя в узлах сети (при учете тепловых потерь), температуры внутреннего воздуха у потребителей, расходы и температуры воды на входе и выходе в каждую систему теплопотребления. При работе нескольких источников на одну сеть определяется распределение воды и тепловой энергии между источниками. Подводится баланс по воде и отпущенной тепловой энергией между источником и потребителями. Определяются зоны влияния источников на сеть.

Конструкторский расчет

Целью конструкторского расчета является определение диаметров трубопроводов тупиковой и кольцевой тепловой сети при пропуске по ним расчетных расходов при заданном (или неизвестном) располагаемом напоре на источнике.

Данная задача может быть использована при:

- Проектировании новых тепловых сетей;
- При реконструкции существующих тепловых сетей;

• При выдаче разрешений на подключение новых потребителей к существующей тепловой сети.

В качестве источника теплоснабжения может выступать любой узел системы, например тепловая камера.

Для более гибкого решения данной задачи предусмотрена возможность задания для каждого участка тепловой сети либо оптимальной скорости движения воды, либо удельных линейных потерь напора.

В результате расчета определяются диаметры трубопроводов, располагаемый напор в точке подключения, расходы, потери напора и скорости движения воды на участках сети.

Расчет температурного графика

Целью расчета является определение минимально необходимой температуры теплоносителя на выходе из источника для обеспечения у выбранного потребителя температуры внутреннего воздуха не ниже расчетной. Температурный график строится для отопительного периода с интервалом в 1 °C, Рисунок 1, « Пример температурного графика».

Предусмотрена возможность задания температуры срезки графика и компенсации недоотпуска тепловой энергии в этот период времени за счет увеличения расхода сетевой воды от источника.

Рисунок 1.1. Пример температурного графика

Пьезометрический график

Целью построения пьезометрического графика Рисунок 2, «Пример пьезометрического графика» является наглядная иллюстрация результатов гидравлического расчета (наладочного, поверочного, конструкторского). Настройка графика задается пользователем, при этом на экран может выводиться:

- Линия давления в подающем трубопроводе;
- линия давления в обратном трубопроводе;
- линия поверхности земли;
- линия потерь напора на шайбе;

- высота здания;
- линия вскипания;
- линия статического напора.

рафик Файл + 🚮 + 🗘 100%	-lana	и и прим	ep 3	- 198	- nik					
75 70 65 60	*	5- ⁹	63.39	6232	5. ⁹	62.86	A.81	\$.02	\$.95	
565 50 8 45 60008 35 25 20	*	1.9	2.5	1.65	p.m	A OL	- 30.8	312	-12	
15 10 5 0 Наименорание узла	Северная	тк-2	тк-з	Задвижка №2	ТК-18	ТК-31	тк-30	TK-29	т/ц ж.ч.	
еодезическая высота, м lanop в обратном rpyбonpoвoде, м	27	27.384	27.566	27.626	27.774	28.017	30.404	12 31,226	31,3	
^р асполагаемый напор, м Длина участка, м	37 220	36.201 76.63	35.823 0.2	35.696 10.93	35.383 13.11	34.841 52.63	29.405 22.19	27.797 4.69	27.65	
Диаметр участка, м Потери напора в подающем трубопроводе, м	0.25	0.25	0.15	0.15	0.1 0.3	0.08 3.048	0.07	0.05		
Іотери напора в обратном грубопроводе, м Скорость движения воды в	0.384	0.182	0.06	0.148	0.243	2.387	0.822	0.074		
под.тр-де, м/с	0.578	0.577	0.808	0.808	0.935	1.262	0.905	0.407		

Рисунок 1.2. Пример пьезометрического графика

В таблице под графиком выводятся для каждого узла сети наименование, геодезическая отметка, высота потребителя, напоры в подающем и обратном трубопроводах, величина дросселируемого напора на шайбах у потребителей, потери напора по участкам тепловой сети, скорости движения воды на участках тепловой сети и т.д. Количество выводимой под графиком информации настраивается пользователем.

Также график может отображать падение температуры в тепловой сети, после проведения расчетов с учетом тепловых потерь. Рисунок 3, «График падения температуры»

Файл • 🖻 • 🗇 100	0% •	303	(Pr	eseti)		• 付 🖄								
	160 g 150			148.92	148.4	148.4		148.23	148.08	147.86	146.3	145.62	1653	
пература, С*	130 120 110													
Teu	100 90 80 70			11.69	-	3		68.14	67.48	67.6	68.45	68.82	20	
	60	Canadian	TVA	TKO	774.48	20/ 2 70/ 12	716.40	74.47	TK OI	TK 00	TK 00	TVA	and the loss of	
Наниенование узла		северная	10	11	10	10	10	10	12	13	14	10	7/12.98.9	
Напор в обратном трубопроводе, м		25	25.047	25.065	25.08	25.13	25.254	25.411	25.603	25.855	26.323	26.023	28.262	
Располагвемый напор, м		60	59.875	59.825	59.782	59.647	59.308	58.88	58.384	\$7.719	56.487	51.998	51.33	
Длина участка, м		60.75	107.48	76.63	1	10.93	19.08	16.23	23.6	150	80.64	15.18		
Диаметр участка, м		0.2	0.259	0.25	0.125	0.125	0.1	0.08	0.08	0.1	0.07	0.05		
Потери напора в подающе трубопроводе, м	IM	0.079	0.031	0.027	0.086	0.216	0.271	0.304	0.413	0.764	2.789	0.425		
Потери напора в обратное трубопроводе, м	vi	0.047	0.018	0.016	0.049	0.124	0.157	0.193	0.251	0.469	1.7	0.239		
Скорость движения воды под.тр-де, м/с	в	0.332	0.198	0.212	0.85	0.85	0.721	0.7	0.7	0.448	0.913	0.623		
Скорость движения воды обр.тр-де, м/с		-0.251	-0.15	-0.161	-0.644	-0.644	-0.548	-0.545	-0.545	-0.349	-0.713	-0.461		
Удельные пинейные потер	a w	1.057	0.271	0.327	13.077	13.077	12.815	15,455	10.455	4.958	33 801	75 443		

Рисунок 1.3. График падения температуры

При этом на график выводятся значения температур в узловых точках по подающему и обратному трубопроводам. Количество выводимой под графиком информации настраивается пользователем.

Коммутационные задачи

Коммутационные задачи предназначены для анализа изменений вследствие отключения задвижек или участков сети. В результате выполнения коммутационной задачи определяются объекты, попавшие под отключение. При этом производится расчет объемов воды, которые возможно придется сливать из трубопроводов тепловой сети и систем теплопотребления. Результаты расчета отображаются на карте в виде тематической раскраски отключенных участков и потребителей и выводятся в отчет. Подробно с описанием задач можно ознакомиться в разделе *Коммутационные задачи*

Расчет нормативных потерь тепла через изоляцию

Целью данного расчета является определение нормативных тепловых потерь через изоляцию трубопроводов в течение года. Тепловые потери определяются суммарно за год с разбивкой по каждому месяцу с учетом работы трубопроводов тепловой сети в различные периоды (летний, зимний). Расчет может быть выполнен с учетом поправочных коэффициентов на нормы тепловых потерь.

Просмотреть результаты расчета можно как суммарно по всей тепловой сети, так и по каждому отдельно взятому источнику тепловой энергии и каждому центральному тепловому пункту (ЦТП), а также по различным владельцам (балансодержателям) участков тепловой сети. Рисунок 4, «Пример расчета годовых потерь тепла»

Также результаты выполненных расчетов можно посмотреть экспортировать в MS Excel. Подробно с описанием задач можно ознакомиться в разделе Раздел 12.2, «Запуск расчета»

А															
— T					- Enado	-					.10		-		_
⊢ Iепло ÷ и	вая	сеть	la el		т 200 т 950 т 55 - 00									потерь	Сохранит
⊡- Котельная № 1 ЦТП - 1 ЦТП - 1 (ГВС)				Інв	-30.0	,	100 00.0		нв -0.0	Тгрунт	. U.U	Οτ	чет		
				Тлод	150.	0	Твв 20.0	Т	под 62.0	Тподв	10.0				
ЦТП - 1 (ГВС)						70.0	-			49.0	_		💿 Сумм	иарные по п	одсети
	-ці	III · 2	ED C)		Тобр	10.0			T	обр 43.0			🔘 Под	анному узлу	
	ЧЦ	11.52	I BUJ												
					🔽 Поп	равочн	ый коз	ффициент на	а нормы те	пловых поте	эрь		Владель	ыцы:	
					🔽 Русс	ские за	аголов	ки в отчете					(Все вл	адельцы)	
Месяц	П	Про	Тнв	Тгр	Тпод	Тобр	Тхв	Qпод Гкал	Qобр Гкал	і Сут_под т	Qут_под	. Gyr_обр т	Qут_обр	. Сут_пот т	Qyr_nor
Ннварь	U	/44	-11.0	1.0	104.5	54.9	5.0	389.0	166.7	229.4	19.2	234.1	11.8	198.7	11.6
	Л	0	-11.0	1.0	60.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Февраль	0	672	-30.0	0.0	150.0	70.0	0.0	445.4	190.9	201.8	23.8	210.0	13.8	179.4	12.8
	Л	0	-30.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Март	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Апрель	0	720	0.0	0.0	77.0	45.0	0.0	327.9	140.5	224.8	15.2	227.4	10.2	192.3	9.8
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Май	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Июнь	0	0	0.0	0.0	77.0	45.0	0.0	247.1	105.9	105.0	6.0	105.6	4.8	192.3	9.8
	Л	720	0.0	0.0	60.0	0.0	0.0	71.9	17.0	121.0	7.3	123.1	0.0	0.0	0.0
Июль	0	0	0.0	0.0	77.0	45.0	0.0	255.3	109.4	108.5	6.2	109.1	4.9	198.7	10.1
	Л	744	0.0	0.0	60.0	0.0	0.0	74.3	17.6	125.0	7.5	127.2	0.0	0.0	0.0
Август	0	0	0.0	0.0	77.0	45.0	0.0	255.3	109.4	108.5	6.2	109.1	4.9	198.7	10.1
	Л	744	0.0	0.0	60.0	0.0	0.0	74.3	17.6	125.0	7.5	127.2	0.0	0.0	0.0
Сентябры	0	720	0.0	0.0	77.0	45.0	0.0	327.9	140.5	224.8	15.2	227.4	10.2	192.3	9.8
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Октябрь	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ноябрь	0	720	0.0	0.0	77.0	45.0	0.0	327.9	140.5	224.8	15.2	227.4	10.2	192.3	9.8
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Декабрь	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
								A151.6	1737.0	2727 7	191.8	2767 5	112.2	2220.2	124.2

Рисунок 1.4. Пример расчета годовых потерь тепла

Глава 2. Элементы модели тепловой сети

2.1. Введение

Данный раздел посвящен описанию объектов, необходимых для построения математической модели тепловой сети.

Математическая модель представляет собой связанный граф, где узлами являются объекты, а дугами графа – участки тепловой сети. Каждый объект математической модели относится к определенному типу, характеризующему данную инженерную сеть, и имеет режимы работы, соответствующие его функциональному назначению. Тепловая сеть включает в себя следующие основные объекты: источник, участок, потребитель и узлы: центральный тепловой пункт (ЦТП), насосную станцию, запорнорегулирующую арматуру, и другие элементы. Несмотря на то, что на участке может быть и подающий и обратный трубопровод, пользователь изображает участок сети в одну линию. Это внешнее представление сети. Перед началом расчета внешнее представление сети, в зависимости от типов и режимов элементов, составляющих сеть, преобразуется (кодируется) во внутреннее представление, по которому и проводится расчет.

Далее подробно описан каждый элемент математической модели тепловой сети: основные функции, изображение на схеме, внешнее и внутреннее представление, особенности изображения (например при изображении пиковой котельной).

2.2. Источник

Источник – это символьный объект тепловой сети, моделирующий режим работы котельной или ТЭЦ. В математической модели источник представляется сетевым насосом, создающим располагаемый напор, и подпиточным насосом, определяющим напор в обратном трубопроводе. Внешнее и внутреннее представление источника показано на *рис. «Слева однолинейное изображение сети, справа – внут»*.

Условное обозначение источника в зависимости от режима работы:

Рисунок 2.1. Слева однолинейное изображение сети, справа – внутреннее представление.

В случае, когда на одну тепловую сеть работает несколько источников, внешнее и внутреннее представление будет иметь вид, показанный на *рис. «Сверху: однолинейное изображение сети, снизу – вну»*.

Рисунок 2.2. Сверху: однолинейное изображение сети, снизу – внутренне представление.

При работе нескольких источников на сеть один из них может выступать в качестве пиковой котельной, в этом случае внешнее и внутреннее представление показано на *рис. «Сверху: однолинейное изображение сети, снизу – вну»*

Рисунок 2.3. Сверху: однолинейное изображение сети, снизу – внутренне представление.

Если в сети один источник, то он поддерживает заданное давление в обратном трубопроводе на входе в источник, заданный располагаемый напор на выходе из источника и заданную температуру теплоносителя. Разница между суммарным расходом в подающих трубопроводах и суммарным расходом в обратных трубопроводах на источнике определяет величину подпитки. Она же равна сумме всех утечек теплоносителя из сети (заданные отборы из узлов, утечки, расход на открытую систему ГВС).

Если на одну сеть работает несколько источников, то в общем случае только на одном из источников с подпиткой можно одновременно поддерживать и давление в обратном трубопроводе и располагаемый напор на выходе. У остальных источников с подпиткой можно поддерживать только давление в обратном трубопроводе. При работе нескольких источников на одну сеть некоторые источники могут не иметь подпитки. На таких источниках давление в обратном трубопроводе не фиксируется и поддерживаться может только располагаемый напор.

Следует отметить, что при работе нескольких источников не при любых исходных данных может существовать решение. Один источник может задавить другой, заданные давления и напоры могут оказаться недостижимы. Это зависит от величины подпитки, от конфигурации сети, от сопротивлений трубопроводов и т.д. В каждом конкретном случае это может показать только расчет.

Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как источник. Уникальный номер (ID) в структуре слоя тепловой сети – ID 1.

2.3. Участок

Участок - это линейный объект, на котором не меняются:

- Диаметр трубопровода;
- Тип прокладки;
- Вид изоляции;
- Расход теплоносителя.

Двухтрубная тепловая сеть изображается в одну линию и может, в зависимости от желания пользователя, соответствовать или не соответствовать стандартному изображению сети по ГОСТ 21-605-82.

Как любой объект сети, участок имеет разные режимы работы, например, «отключен подающий» или «отключен обратный», см. *рис. «Режимы изображения участка»*. Эти режимы позволяют смоделировать многотрубные схемы тепловых сетей.

Рисунок 2.4. Режимы изображения участка

На *рис. «Пример однолинейного и внутреннего представления»* изображена цепочка из участков в однолинейном изображении имеющих разные режимы работы. Ниже, соответствующее ей внутреннее двухлинейное представление этой сети.

Рисунок 2.5. Пример однолинейного и внутреннего представления

На *рис. «Изображение трехтрубной и четырехтрубной сети»* показано, как можно изобразить трехтрубную сеть, с двумя подающими и одним обратным трубопроводом, а также четырехтрубную систему.

Примечание

Участок как тип инженерной сети может выступать в качестве отсекающего устройства. Т.е. в этом случае его можно использовать для отключения объектов, например, потребителей.

Графический тип объекта - линейный, относится к объектам инженерных сетей и классифицируется как участок, отсекающий. Уникальный номер (ID) в структуре слоя тепловой сети – ID 6.

2.3.1. Начало и конец участка

Участок обязательно должен начинаться и заканчиваться одним из типовых узлов (объектом сети).

Условия завершения участка:

- Разветвление меняется расход;
- Изменение диаметра меняется сопротивление;
- Смена типа прокладки (канальная, бесканальная, воздушная) меняются тепловые потери;
- Смена вида изоляции (минеральная вата, пенополиуретан и т.д.) меняются тепловые потери;
- Смена состояния изоляции (разрушение, увлажнение, обвисание) меняются тепловые потери.

Пользователь может разбить трубопровод на разные участки в любом месте по своему желанию даже там, где тепловые и гидравлические свойства трубопровода не меняются. Например, трубопровод может быть разделен на участки задвижкой, смотровой камерой на магистрали или узлом, разграничивающим балансовую принадлежность.

2.3.2. Направление

На изображенных участках появляется стрелка, указывающая направление, заданное при его вводе (рисовании) от начального узла к конечному. Направление движения воды в подающем трубопроводе можно узнать, только после выполнения гидравлического расчета.

После выполнения расчета значение расхода в подающем трубопроводе на некоторых участках может быть отрицательным. Отрицательный расход означает, что направление движения воды в подающем трубопроводе на участке не совпадает с направлением стрелки. При установленном флажке *Автоматически* изменять направление участков, после выполнения расчетов (наладочный, поверочный) стрелки будут указывать направление движения жидкости по подающему трубопроводу, при этом значение расхода в подающем трубопроводе будет всегда положительно. Подробнее о том, как включить эту опцию *см. здесь*.

Рисунок 2.7. Направление движения воды

На *рис. «Направление движения воды»* изображены две схемы. На схеме слева участок вводился слева направо, во второй - справа налево. На участках подписаны полученные при расчете расходы по подающим и обратным трубопроводам. Значения расходов на обеих схемах отличаются только знаком, из-за различного направления стрелок на участках. В обоих случаях вода течет от источника по подающему трубопроводу к потребителю и от потребителя по обратному трубопроводу к источнику.

2.3.3. Вспомогательный участок

Вспомогательный участок – это линейный объект математической модели, имеющий два режима работы. Вспомогательный участок (Указатель узла измерения регулятора) при использовании его с регуляторами давления «до себя» и «после себя» указывают место контролируемого параметра. Вспомогательный участок для ЦТП определяет начало трубопроводов горячего водоснабжения при четырёхтрубной тепловой сети после ЦТП.

Примечание

Никаких исходных данных по вспомогательному участку заносить не требуется.

Ŧ

Предупреждение

Подробнее о режимах работы вспомогательного участка смотрите в соответствующих разделах « Регулятор давления» и «Вспомогательный участок для ЦТП»).

Графический тип объекта - линейный, относится к объектам инженерных сетей и классифицируется как участок, отсекающий. Уникальный номер (ID) в структуре слоя тепловой сети – ID 13.

2.4. Потребитель

Потребитель – это символьной объект тепловой сети, характеризующийся потреблением тепловой энергии и сетевой воды.

В модели существует два вида потребителей:

«Потребитель»

«Обобщенный потребитель»

2.4.1. Потребитель

Потребитель – это конечный объект участка, в который входит один подающий и выходит один обратный трубопровод тепловой сети. Под потребителем понимается абонентский ввод в здание.

Условное обозначение потребителя в зависимости от режима работы:

Присоединение потребителя к тепловой сети и его внутреннее представление изображено на Рисунок 12, «Слева: присоединение потребителя к тепловой сети, справа – его внутреннее представление».

Рисунок 2.8. Слева: присоединение потребителя к тепловой сети, справа – его внутреннее представление

На Рисунок 13, «Правильное и неправильное изображение потребителя» показано неверное и правильное присоединение потребителя к тепловой сети.

Рисунок 2.9. Правильное и неправильное изображение потребителя

Внутренняя кодировка потребителя зависит от схемы присоединения тепловых нагрузок к тепловой сети. Схемы могут быть элеваторные, с насосным смешением, с независимым присоединением, с открытым или закрытым отбором воды на ГВС. Схемы присоединения имеют разную степень автоматизации подключенной нагрузки, которая определяется наличием регулятора температуры, например на ГВС, регулятором расхода или нагрузки на систему отопления, регулирующим клапаном на систему вентиляции.

На данный момент в распоряжении пользователя 34 схемы присоединения потребителей. Подробно рассмотреть вышеприведенные схемы подключения потребителей можно в разделе « Расчетные схемы присоединения потребителей»

Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как потребитель. Уникальный номер (ID) в структуре слоя тепловой сети – ID 3

2.4.2. Обобщенный потребитель

Обобщенный потребитель – символьный объект тепловой сети, характеризующийся потребляемым расходом сетевой воды или заданным сопротивлением. Таким потребителем можно моделировать, например, общую нагрузку квартала.

Такой объект удобно использовать, когда возникает необходимость рассчитать гидравлику сети без информации о тепловых нагрузках и конкретных схемах присоединения потребителей к тепловой сети. Например, при расчете магистральных сетей информации о квартальных сетях может не быть, а для оценки потерь напора в магистралях достаточно задать обобщенные расходы в точках присоединения кварталов к магистральной сети.

Рисунок 2.10. Пример обобщенного потребителя

Обобщенный потребитель не всегда является конечным объектом сети. В связи с этим, обобщенный потребитель может быть установлен на транзитном участке. Схема подключения обобщенного потребителя к тепловой сети представлена на *рис. «Сеть с обобщенными потребителями»*.

Рисунок 2.11. Сеть с обобщенными потребителями

Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как потребитель. Уникальный номер (ID) в структуре слоя тепловой сети – ID 12.

2.5. Узел

Узел - это символьный объект тепловой сети. В тепловой сети узлами являются все объекты сети, кроме источника, потребителя и участков. В математической модели внутреннее представление объектов (кроме источника, потребителя, перемычки, ЦТП

и регуляторов) моделируется двумя узлами, установленными на подающем и обратном трубопроводах.

2.5.1. Простой узел

Простой узел – это символьный объект тепловой сети, например, разветвление трубопровода, смена прокладки, вида изоляции или точка контроля для регулятора.

Условное обозначение узловых объектов в зависимости от режима работы:

тепловая камераразветвление

смена диаметра

На *рис. «Слева однолинейное изображение узла, справа: внутр»* показан внешний вид узла в однолинейном изображении и во внутреннем представлении в математической модели. В математической модели объект представляется двумя узлами, установленными на подающем и обратном трубопроводах.

Рисунок 2.12. Слева однолинейное изображение узла, справа: внутреннее представление

На *рис. «Подключение подающего трубопровода к тепловой сети»* представлен вариант подключения одного трубопровода (подающего) к двухтрубной тепловой сети.

Рисунок 2.13. Подключение подающего трубопровода к тепловой сети

Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 2.

2.6. Центральный тепловой пункт (ЦТП)

ЦТП – это символьный элемент тепловой сети, характеризующийся возможностью дополнительного регулирования и распределения тепловой энергии.

Условное обозначение ЦТП

Наличие такого узла подразумевает, что за ним находится тупиковая сеть, с индивидуальными потребителями, как показано на *рис. "Двухтрубная сеть после ЦТП"*.

Рисунок 2.14. Двухтрубная сеть после ЦТП

Внутренняя кодировка ЦТП зависит от схемы присоединения тепловых нагрузок к тепловой сети. Это может быть, например, групповой элеватор или независимое подключение группы потребителей. На данный момент в распоряжении пользователя 29 схем присоединения ЦТП.

В ЦТП может входить и выходить только один участок тепловой сети (подающий и обратный трубопровод). Причем входящий участок должен быть направлен к ЦТП (направление стрелки), а выходящий от ЦТП к следующему объекту. На *рис. «Слева: неправильное изображение ЦТП, справа – прав»* представлено правильное и неправильное изображение ЦТП в тепловой сети.

Рисунок 2.15. Слева: неправильное изображение ЦТП, справа – правильное.

Исключением из данного правила является четырёхтрубная тепловая сеть после ЦТП, в этом случае из ЦТП выходит два участка - один основной и один вспомогательный.

Вспомогательный участок используется для подключения трубопровода горячего водоснабжения. Подробнее о вспомогательном участке Раздел 2.5.1, «Вспомогательный участок для ЦТП». Пример однолинейного изображения четырехтрубной тепловой сети после ЦТП показан на *рис. «Однолинейное изображение четырехтрубной сети после»*.

Рисунок 2.16. Однолинейное изображение четырехтрубной сети после ЦТП

Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 8

2.6.1. Вспомогательный участок для ЦТП

Вспомогательный участок указывает начало трубопроводов горячего водоснабжения при четырёхтрубной тепловой сети после ЦТП. Это небольшой участок заканчивается простым узлом, к которому подключается трубопровод горячего водоснабжения, как показано на *рис. «Подключение трубопровода ГВС»*.

Рисунок 2.17. Подключение трубопровода ГВС

2.7. Насосная станция

Насосная станция – символьный объект тепловой сети, характеризующийся заданным напором или напорно-расходной характеристикой установленного насоса.

Условное обозначение насосной станции –

Насосная станция в однолинейном изображении представляется одним узлом, но во внутреннем представлении в зависимости от заданных параметров в семантической базе данных, может быть установлена на обоих трубопроводах, как показано на *puc.* «Сверху: однолинейное изображение сети, снизу- внут».

Рисунок 2.18. Сверху: однолинейное изображение сети, снизувнутреннее представление.

Для задания направления действия насоса направление участков, входящих в него должно совпадать с направлением работы насоса (*рис. «Неправильное и правильное изображение насоса»*).

Рисунок 2.19. Неправильное и правильное изображение насоса

В насосную станцию обязательно должен входить и выходить только один участок, как показано на *рис. «Слева: неправильное изображение насоса, справа – n»*.

Рисунок 2.20. Слева: неправильное изображение насоса, справа – правильное.

При последовательной установке все насосы необходимо изобразить на схеме, как показано на *рис. «Слева: последовательно работающие насосы, справа: »* слева.

Рисунок 2.21. Слева: последовательно работающие насосы, справа: параллельно работающие разные марки насосов

Если насосы установлены на станции параллельно, но имеют разные марки или характеристики, каждый необходимо изобразить на схеме, как на *рис. «Слева: последовательно работающие насосы, справа: »*.

Если же насосы установлены параллельно и имеют одинаковые характеристики, то на схеме их можно обозначить одним объектом, задав количество работающих насосов.

Насос можно моделировать двумя способами:

- как идеальное устройство которое изменяет давление в трубопроводе на заданную величину
- как устройство, работающее с учетом реальной напорно-расходной характеристики конкретного насоса.

В первом случае просто задается значение напора насоса на подающем и (или) обратном трубопроводе. Если значение напора на одном из трубопроводов равно нулю, то насос на этом трубопроводе отсутствует. Если значение напора отрицательно, то это означает, что насос работает навстречу входящему в него участку. На Рисунок 26, «Моделирование работы насоса напором» ниже видно, как различные направления участков, входящих и выходящих из насоса в сочетании с разными знаками напора на насосе влияют на результат расчета, отображенный на пьезометрических графиках. Когда задается только значение напора на насосе, оно остается неизменным не зависимо от проходящего через насос расхода.

Рисунок 2.22. Моделирование работы насоса напором

Второй способ позволяет использовать Справочник по насосным характеристикам. В справочнике для насоса можно задать его QH характеристику любым количеством точек. Подробнее об этом смотрите «Справочник по насосам».

Рисунок 2.23. Моделирование работы насоса QH характеристикой

Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 4.

2.8. Задвижка

Задвижка – это символьный объект тепловой сети, являющийся отсекающим устройством. Задвижка кроме двух режимов работы (открыта, закрыта), может находиться в промежуточном состоянии, которое определяется степенью её закрытия. Промежуточное состояние задвижки должно определятся при её режиме работы Открыта.

Условное обозначение запорно-регулирующего устройства в зависимости от режима работы:

Задвижка в однолинейном изображении представляется одним узлом, но во внутреннем представлении в зависимости от заданных параметров в семантической базе данных, может быть установлена на обоих трубопроводах *рис. «Однолинейное и внутренне представление задвижки»*.

Рисунок 2.24. Однолинейное и внутренне представление задвижки

В задвижку может входить только один участок и только один участок выходить. На *рис. «Неправильное изображение задвижки»* показано неправильное изображение задвижки.

Рисунок 2.25. Неправильное изображение задвижки

Примечание

Задвижка в режиме закрыта, во внутреннем представлении моделируется двумя закрытыми задвижками на обоих трубопроводах.

Изображение задвижек, расположенных внутри тепловой камеры показано на *рис.* «Деталировка тепловой камеры».

Рисунок 2.26. Деталировка тепловой камеры

Задвижку можно моделировать двумя способами:

- как исключительно запирающее устройство
- как запорно-регулирующее устройство, работающее с учетом изменяющегося сопротивления затвора (клапана) в зависимости от степени открытия. Для этого следует использовать справочник по запорной арматуре, подробнее об этом смотрите «Справочник по запорной арматуре»

Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как отсекающее устройство. Уникальный номер (ID) в структуре слоя тепловой сети – ID 5.

2.9. Перемычка

Перемычка - это символьный объект тепловой сети, моделирующий участок между подающим и обратным трубопроводами.

Условное обозначение перемычки в зависимости от режима работы:

Перемычка во внутреннем представлении является участком, соединяющим подающий и обратный трубопроводы, как показано на *рис. «Слева: однолинейное изображение сети, справа: её в»*.

Рисунок 2.27. Слева: однолинейное изображение сети, справа: её внутреннее представление

Так как перемычка в однолинейном изображении представлена узлом, то изобразить соединение между подающим трубопроводом одного участка и обратным трубопроводом другого участка можно, как представлено на *рис. «Слева:* однолинейное изображение сети, справа: её в».

Рисунок 2.28. Слева: однолинейное изображение сети, справа: её внутреннее представление

С помощью перемычек можно моделировать летний режим работы открытых систем централизованного теплоснабжения, в случаях, когда теплоноситель может подаваться к потребителям как по подающему, так и по обратному трубопроводам, без возврата воды на источник. Переходы между подающими и обратными трубопроводами осуществляются через перемычки. Изображение этой схемы и её внутреннее

представление показаны на рисунке *рис. «Сверху: однолинейное изображение сети, снизу: её в»*.

Рисунок 2.29. Сверху: однолинейное изображение сети, снизу: её внутреннее представление

Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 11.

2.10. Дросселирующие устройства

Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 7.

2.10.1. Дроссельная шайба

Дроссельная шайба – это символьный объект тепловой сети, характеризуемый фиксированным сопротивлением, зависящим от диаметра шайбы. Дроссельная шайба имеет два режима работы:

Вычисляемая шайба

Устанавливаемая шайба

Для объекта *Вычисляемая шайба* в результате наладочного расчета определяется количество шайб и их диаметр.

Для *Устанавливаемой шайбы* необходимо занести информацию о количестве этих устройств и их диаметре.

Дроссельная шайба в однолинейном изображении представляется одним узлом, но во внутреннем представлении в зависимости от заданных параметров в семантической базе данных, может быть установлена на обоих трубопроводах, как показано на *рис.* «Слева – однолинейное изображение сети, справа – вн».

Рисунок 2.30. Слева – однолинейное изображение сети, справа – внутреннее представление

С точки зрения модели дроссельная шайба это фиксированное сопротивление, определяемое диаметром шайбы, которое можно устанавливать как на подающем так и на обратном трубопроводе. Так как это нерегулируемое сопротивление, то величина гасимого шайбой напора зависит от квадрата проходящего через шайбу расхода. На Рисунок 35, «Зависимость потерь от расхода» ниже видно, как меняются потери на шайбе, установленной на подающем трубопроводе, при увеличении расхода через нее в два раза.

Рисунок 2.31. Зависимость потерь от расхода

Является одним из режимов работы объекта Дросселирующий узел. Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 7.

2.10.2. Регулятор располагаемого напора

Регулятор располагаемого напора – это символьный объект тепловой сети, поддерживающий заданный располагаемый напор после себя.

регулятор располагаемого напора на подающем трубопроводе

X

регулятор располагаемого напора на обратном трубопроводе

Устанавливается в зависимости от выбранного режима, на одном из трубопроводов: подающем или обратном, как показано на *рис. «Сверху: однолинейное изображение сети, снизу – вну»*.

Рисунок 2.32. Сверху: однолинейное изображение сети, снизу – внутренне представление

Является одним из режимом работы объекта Дросселирующий узел. Графический тип объекта - символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 7.

2.10.3. Регулятор расхода

Регулятор расхода – это символьный объект тепловой сети, поддерживающий заданным пользователем расход теплоносителя.

регулятор расхода на подающем трубопроводе

регулятор расхода на обратном трубопроводе

Устанавливается в зависимости от выбранного режима, на одном из трубопроводов: подающем или обратном.

2.10.4. Регулятор давления

Регулятор давления – это символьный объект тепловой сети, поддерживающий заданное давление в трубопроводе «до себя» или «после себя».

регулятор давления на подающем трубопроводе

регулятор давления на обратном трубопроводе

Устанавливается в зависимости от выбранного режима, на одном из трубопроводов: подающем или обратном, как показано на *рис. «Сверху: однолинейное изображение сети, снизу – вну»*.

Рисунок 2.33. Сверху: однолинейное изображение сети, снизу – внутренне представление

Регулятор давления, установленный на подающем или обратном трубопроводе, может контролировать давление «до себя» или « после себя», как показано на *рис.* «Изображения регуляторов давления "до себя" и "посл». Для того чтобы указать как работает регулятор необходимо установить узел контроля (простой узел) и соединить их вспомогательным участком (Раздел 2.3.3, «Вспомогательный участок»Раздел 2.5.1, « Простой узел»).

Рисунок 2.34. Изображения регуляторов давления "до себя" и "после себя".

На *рис. «Регулятор давления «до себя» на подающем трубопровод»* показан участок трубопровода, на котором установлен регулятор давления «после себя» на обратном трубопроводе, регулирующий давление на всасывающем патрубке насосной станции.

Рисунок 2.35. Регулятор давления «до себя» на подающем трубопроводе
Глава 3. Моделирование тепловой сети

3.1. Введение

В данном разделе рассказывается о том, как изображается и редактируется математическая модель тепловой сети, а также меняется её структура (добавляются новые режимы работы, меняется их внешний вид и размеры).

В основе математической модели для расчетов сетей лежит граф. Как известно, граф состоит из узлов, соединенных дугами. В любой сети можно выделить свой набор узловых элементов. Так в теплоснабжении - это источники, тепловые камеры, потребители, насосные станции, запорная арматура. Дугами графа являются участки сети-трубопроводы. Участок обязательно должен начинаться в каком-то узле и заканчиваться узлом.

Начиная рисовать участок сети, нужно будет обязательно либо привязать начало участка к одному из существующих узлов, либо выбрать узел, из набора узлов, в котором этот участок будет начинаться. Точно так же, заканчивая ввод участка, нужно либо привязать его конец к одному из существующих узлов, либо установить новый узел, в котором участок будет закончен. При перемещении какого-либо узла (изменении его координаты), вместе с ним переместятся начала и концы участков, связанных с этим узлом. То есть изменение положения узлов в пространстве не приведет к изменению топологии графа, сеть не "развалится".

С точки зрения математической модели совершенно неважно, будут ли координаты узлов и точек перелома участков введены по координатам с геодезической точностью, обрисованы по какой-то подложке или просто изображены схематично. Подробнее об изображении сети смотрите раздел «Изображение тепловой сети на карте». Важно, что нужные пары узлов соединены дугами, и в результате "рисования" сети мы автоматически получаем и кодировку математического графа сети. Если рисунок выполнен правильно, то и граф сети ошибок содержать не будет.

Для нанесения тепловой сети необходимо использовать слой системы Zulu определенной структуры, к объектам которого подключены таблицы с необходимыми для расчетов полями. Наносить схему тепловой сети можно либо на заранее подготовленную подоснову, либо на чистую карту. Для проверки правильности нанесения схемы тепловой сети можно произвести проверку ее связности и определить все ли узлы и участки связаны между собой. Проверку можно производить как для полностью нанесенной сети, так и для готовых ее частей.

3.2. Изображение тепловой сети на карте

Тепловую сеть можно изображать на карте, с привязкой к местности (по координатам, с привязкой к окружающим объектам), что позволит в дальнейшем не только проводить теплогидравлические расчеты, но и решать другие инженерные задачи, зная точное местонахождение тепловых сетей. Пример изображения тепловой сети на карте с

привязкой к местности показан на рис. «Изображение тепловой сети на карте с привязкой к м».

Рисунок 3.1. Изображение тепловой сети на карте с привязкой к местности

3.2.1. Схематическое изображение тепловой сети

Тепловая сеть может быть изображена схематично, при этом неважно, будут ли координаты узлов (объектов тепловой сети) и углы поворотов (точки перелома участков) введены по координатам с геодезической точностью или обрисованы по подложке. Важно, чтобы нужные объекты тепловой сети (узлы) были соединены участками (дугами). Схематичное изображение модели тепловой сети позволяет быстро провести теплогидравлические расчеты, но не даёт возможности определить местонахождение своих сетей. Пример схематичного изображения тепловой сети показан на *рис. «Схематичное изображение сети»*.

Рисунок 3.2. Схематичное изображение сети

3.2.2. Упрощенное и детальное изображение сети

Степень детализации в обоих случаях: при изображении тепловой сети на карте с привязкой к местности и при схематичном изображении может быть различна. Например, на *рис. «Упрощенное изображение сети»* и *рис. «Детальное изображение сети.»* изображены две эквивалентные схемы тепловой сети. Однако на *рис. «Упрощенное изображение сети»* упрощенное изображение сети, на котором отсутствуют П-образные компенсаторы и задвижки, а на *рис. «Детальное изображение сети.»* детальное изображение - с прорисовкой П-образных компенсаторов и запорных устройств в тепловых камерах.

Рисунок 3.3. Упрощенное изображение сети

Рисунок 3.4. Детальное изображение сети.

Геометрические длины участков на *рис. «Упрощенное изображение сети»* и *рис. «Детальное изображение сети.»* различны, но для инженерных расчетов значения длины задаются в базе данных по участкам. Наличие компенсаторов и запорных устройств, влияет на гидравлические потери в тепловой сети. Все местные сопротивления должны быть занесены в базу данных, для адекватного моделирования гидравлических потерь.

В связи с этим точность и детальность отображения сети на карте на результаты расчетов не влияют

3.3. Последовательность действий

1. Создать слой тепловой сети

Для нанесения тепловой сети на карту необходимо предварительно создать слой тепловой сети. Подробнее об этом « Создание слоя тепловой сети»;

2. Настроить структуру слоя: внешний вид, размеры символов;

Пользователь может изменить графическое отображение любого из объектов (размер, внешний вид), а также добавить к сформированной структуре новые объекты, например «Внезапное сужение (расширение)», «Граница балансовой принадлежности», «Узел учета тепловой энергии», «Компенсатор» и т.д. Подробнее о настройке структура слоя Структура слоя;

3. Нанести тепловую сеть на карту.

После создания слоя тепловой сети, модель можно изображать на карте. О том, как изображать и редактировать объекты тепловой сети, смотрите соответсвующие раздели Ввод объектов сети и Редактирование сети

4. Проверить связность.

Для проверки правильности создания математической модели тепловой сети необходимо произвести проверку связности всех объектов сети между собой. Проверку можно производить как для полностью нанесенной сети, так и для ее частей. Подробнее о проверке связности « Контроль ошибок при вводе».

3.4. Создание слоя тепловой сети

Для того чтобы создать слой тепловой сети надо:

1. Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку панели инструментов. На экране появится панель теплогидравлических расчетов (*puc. «Окно теплогидравлических расчетов ZuluThermo»*).

ZuluThermo	_ + ×
	Слой
Наладка Поверка Температурный график Конструкторский Сервис	
 С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета 	
Раскраска (нет>	•
Расчет Настройки Справка Закрыть	

Рисунок 3.5. Окно теплогидравлических расчетов ZuluThermo

2. Выбрать вкладку Сервис и в появившемся окне (*рис. «Вкладка Сервис окна теплогидравлических расчетов»*) нажать кнопку Создать новую сеть. На экране появится диалог создания новой тепловой сети.

ZuluThermo		× (Слой)
Наладка Поверка Температ	урный график Конструкторский	Сервис
Длины участков с карты	Создать новую сеть	
Отметки высот с карты	Обновить структуры таблиц	
Начала и концы участков	Единицы измерения	
	Расчет тепловых потерь	
Расчет Настройки	Справка Закрыты	

Рисунок 3.6. Вкладка Сервис окна теплогидравлических расчетов

Новая система	теплоснабжения	8 X
Имя файла:		
Название слоя	R.	
Таблицы:	🛼 Таблицы Paradox	~
	📝 добавить в карту	
	ОК Отмена	Справка

Рисунок 3.7. Диалог создания слоя тепловой сети

4. В окне сохранения файла (*рис. «Диалог сохранения слоя»*) выбрать диск и каталог, где будут храниться файлы моделируемой тепловой сети. Слой сети следует создавать в отдельной папке.

Сохранить файл				8 23
Папка:	🔒 D:\piter	•) 🗊 📂	×
Мои карты Серверы гео Рабочий стол	ieploseti			
Мои докумен				
Компьютер	Имя файла:			Сохранить
	Тип файлов:	Слои Zulu (*.600)	•	Отмена

Рисунок 3.8. Диалог сохранения слоя

Примечание

Имя слоя НЕОБХОДИМО ЗАДАВАТЬ ЛАТИНСКИМИ буквами, слой ОБЯЗАТЕЛЬНО должен создаваться в отдельной папке. Также важно, чтобы в пути до файлов слоя НЕ БЫЛО РУССКИХ БУКВ, допускается использование только латинских. Данное ограничение связано с тем, что при работе с локальными таблицами система Zulu использует программные средства, для которых не желательно наличие в имени папки русских символов

5. В строке Имя файла ввести имя файла латинскими символами (например **teploset**) и нажать кнопку Сохранить (см. *рис. «Окно создания файла menловой сетии»*). Если будет выбрано имя файла уже существующего слоя, то в результате создания нового слоя существующий слой будет **уничтожен**, и вместо него создастся новый.

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Сохранить файл								8 X
Папка:	🐌 D:\piter\l	eploseti	•	6	ø	Þ	×	.
Мои карты Серверы гео								
Рабочий стол								
Мои докумен								
Компьютер	Имя файла: Тип файлов:	teploset Слои Zulu (*.b00)				•		Сохранить Отмена

Рисунок 3.9. Окно создания файла тепловой сети

6. В окне Новая система теплоснабжения (см. *рис. «Окно создания слоя тепловой сети»*), в строке *Название слоя* ввести пользовательское имя слоя русскими символами, например **Тепловые сети**.

ювая система те	еплоснабжения	8 23
Имя файла:	D:\piter\teploseti\teploset.B00	
Название слоя:	Тепловые сети	
Таблицы:	🛼 Таблицы Paradox 🔹 👻	
	V добавить в карту	
	ОК Отмена	Справка

Рисунок 3.10. Окно создания слоя тепловой сети

При установленном флажке *добавить* в карту созданный слой сразу загружается в текущую карту, если флажок не установлен - слой только создается на диске..

🔊 Примечание

Если не ставить флажок *добавить* в карту, тогда слой тепловой сети будет создан только на диске и для дальнейшей работы его нужно загрузить в карту.

7. После того как все окна диалога (см. *рис. «Окно создания слоя тепловой сети»*) заполнены, нажать кнопку ОК.

3.4.1. Файлы слоя тепловых сетей

После создания слоя в папке тепловой сети сформировались файлы графической и семантической базы данных, созданные с именем заданным в окне Имя слоя (*puc.* «Окно создания файла тепловой сети»), например, teploset. Имена таблиц и

описателей баз данных образованы из имени слоя (teploset) и, например, названия объекта сети (istok), к которому они относятся (например, teploset istok).

teploset.b00	Файлы графической базы данных Zulu.
teploset.b01	
teploset.b02	
teploset.b03	
teploset.b04	
teploset.b05	
teploset.b08	
teploset.zsx	
teploset.zx	
teploset_istok.db	Описатель базы данных и таблица по источникам.
teploset_istok.px	
teploset_istok.zb	
teploset_ctp.db	Описатель базы данных и таблица по ЦТП.
teploset_ctp.px	
teploset_ctp.zb	
teploset_drossel.db	Описатель базы данных и таблица
teploset_drossel.px	по дросселирующим устроиствам.
<pre>teploset_drossel.zb</pre>	
teploset_uzvvod.db	Описатель базы данных и таблица
teploset_uzvvod.px	по узлам ввода (потреоителям).
teploset_uzvvod.zb	
teploset_op.db	Описатель базы данных и таблица
teploset_op.px	по осоощенным потреоителям.
teploset_op.zb	
teploset_kamera.db	Описатель базы данных и
teploset_kamera.px	таолица по тепловым камерам.
teploset_kamera.z	
teploset nasos.db	Описатель базы данных и таблица по участкам.

Таблица 3.1. Файлы слоя тепловых сетей

teploset_nasos.px	
teploset_nasos.zb	
teploset_peremich.db	Описатель базы данных и таблица по перемычкам.
teploset_peremich.px	
teploset_peremich.zb	
teploset_zadvigka.db	Описатель базы данных и таблица по задвижкам.
teploset_zadvigka.px	
teploset_zadvigka.zb	

3.5. Загрузка слоя в карту

Если при создании слоя не была установлена галочка в окне Добавить в карту, то слой сети созданный в определенной директории, следует добавить в карту вручную, для этого необходимо:

1. Выбрать команду главного меню Карта|Добавить слой, либо нажать кнопку панели инструментов. На экране появится диалог выбора слоя. (см. *рис. «Диалог* выбора слоя»).

Открыть файл						2	23
Папка:	🔒 D:\piter	•	G 💋	ø	×	•	
Мои карты	iteploseti						
Серверы нео Геориалистол							
Мои докумен							
						Открыты	
Компьютер	Тип файлов:	Слои Zulu (*.b00;*.zrs;*.zrg;*.zl;*.zww;*.z	:tr)	•		Отмена	

Рисунок 3.11. Диалог выбора слоя

2. Зайти в нужную директорию и выделить слой тепловой сети (см. *рис. «Диалог* выбора слоя»)

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Открыть файл							8	23
Папка:	D:\piter\l	eploseti		•	G 🦻	p.	X 🛄•	
Мои карты Серверы гео	🗃 Тепловые	сети						
Рабочий стол								
0 Мои докумен								
	Объект: "Ten Файл: "teplos	ловые сети" et.b00"				(Открыл	ъ
Компьютер	Тип файлов:	Слои Zulu (*.	.b00;*.zrs;*.zrg	;*.zl;*.zww;*.	ztr)	•	Отмен	a

Рисунок 3.12. Диалог выбора слоя

3. Нажать кнопку Открытьили дважды щелкнуть по выбранному слою. Он будет добавлен в текущую карту.

Глава 4. Структура слоя

При создании слоя тепловой сети, он создаётся с заранее определенной стандартной структурой: символами, базами данных, типовыми объектами тепловой сети и режимами их работы. Редактирование структуры слоя позволяет настроить внешний вид объектов тепловой сети или добавить новые режимы работы для уже существующих объектов.

Редактор структуры слоя позволяет:

- создать, удалить или отредактировать символ; Раздел 4.1.2, «Символы»
- импортировать символ из другого слоя; Раздел 3.3, « Импорт символов из библиотеки других слоев »
- создать новые типовые объекты; Раздел 3.5.2, «Создание нового типа объектов»
- создавать новые режимы для объектов тепловой сети; Раздел 3.6.1, «Создание нового режима объекта»
- поменять размеры символов тепловой сети; Раздел 3.6.2, «Изменение размеров символов тепловой сети»
- поменять внешний вид символов тепловой сети; Раздел 3.6.3, «Изменение внешнего вида символов тепловой сети»
- импортировать типы и режимы из других слоев; Раздел 3.6.5, «Импорт типов и режимов»
- распечатать список объектов, входящих в структуру слоя. Раздел 4.4, « Печать объектов, входящих в структуру слоя»

4.1. Общие сведения о структуре слоя

Чтобы открыть редактор структуры слоя следует:

- Отключить редактирование слоя (²²), для того чтобы можно было зайти в структуру слоя;
- 2.

Выбрать команду главного меню Слой Структура слоя или нажать кнопку ¹ кране появится диалог выбора слоя. (см. *рис. «Диалог выбора слоя»*).

Открыть файл					8	23
Папка:	📔 D:\piter	-) 😰	Þ.	×	
Мои карты	iteploseti					
Серверы гео						
Рабочий стол						
					Открыть	
Компьютер	Тип файлов:	Слои Zulu (*.b00;*.zrs;*.zrg;*.zl;*.zww;*.ztr)		•	Отмена	

Рисунок 4.1. Диалог выбора слоя

3. Войти в нужную папку, выделить слой тепловой сети и нажать кнопку Открыть (см. *рис. «Выбор слоя»*);

Рисунок 4.2. Выбор слоя

На экране появится окно структуры слоя, изображенное на *рис. «Окно структуры слоя»*. Диалоговое окно разделено на две части, в зависимости от того, какой пункт выделен с левой стороны, справа будут происходить соответствующие изменения, т.е. будет отображаться информация, относящаяся к выбранному пункту.

Структура слоя - teploset			23
Файл Правка			
Сохранить Новый Удал	ить Отменить Вернуть	П. 🕜 Выход Справка	
 Слой Слой Символы Линии Заливки Базы данных Примитивы Типы и режимы Узел Остребитель Потребитель Насосная станция Задвижка Участки Зарыжка Дросселирующий узе ЦТП Перемычка Обобщенный потреби Вспомогательный уча 	Слой Название: Теп Семейство файлов: teplo Размещение: D:\pi Система координат: Лока	ловые сети set iter\teploseti\ альная Местная декартова система	Изменить

Рисунок 4.3. Окно структуры слоя

4.1.1. Сохранение изменений и выход

Для сохранения изменений структуры слоя следует нажать кнопку Сохранить или выбрать пункт меню Файл|Сохранить.

Чтобы выйти из редактора структуры слоя нужно нажать кнопку Выход или выбрать пункт меню Файл/Закрыть. Если изменения не были сохранены, система предложит это сделать автоматически.

4.1.2. Символы

При выделении в окне Структура слоя пункта Символы выводится библиотека символов данного слоя, показанная на *рис. «Окно библиотеки символов»*. Для изображения символьного объекта в слое, этот символ должен быть добавлен в библиотеку символов данного слоя.

Файл Правка	
Галаранить Новый Удалить Отменить Вернуть Выход Справка	
🖫 Слой Символы	
★ Символы 🔧 Новый 🕍 Изменить 🗙 Удалить 📯 Операции 🗸	
 Озливки Базы данных Базы данных Примитивы № Типы и режимы 1. Источник 2. Источник 3. Тепловая 4. Разветвление камера 	*
н 3 93ел н 3 Потребитель н 3 Насосная станция 1 Заденика	
 В Участки В Дросселирующий узе В Перемычка В Собщенный потреби 	
🗃 🔀 Вспомогательный уча 9. Задвижка 10. Задвижка 11. 12. (Открыта) (Закрыта) Вычисляем Устанавливае	

Рисунок 4.4. Окно библиотеки символов

Закладка Символы снабжена следующими командными кнопками:

- Новый... Открывает редактор символа для создания нового символа. После создания символ добавляется в список символов слоя.
- Изменить... Открывает редактор символа для символа, выбранного в списке. Так же редактор символов можно вызвать двойным щелчком левой кнопки мыши по символу, который надо изменить.
- Удалить Удаляет из библиотеки символов символ, отмеченный в списке. Если удаляемый символ используется одним из режимов структуры слоя или одним из объектов, удаление этого символа будет запрещено.
- 🍨 🌺 Операции 👻
- Импорт Открывает диалог импорта символов, позволяющий импортировать символы из библиотек других слоев. После завершения импорта импортированные символы пополнят список символов данного слоя. (Раздел 4.1.2.4, « Импорт символов из библиотеки других слоев »).
- Удалить свободные Удаляет из библиотеки символов все символы, не используемые ни одним из объектов. Это позволяет очистить библиотеку от лишних символов.

4.1.2.1. Создание нового символа в библиотеке символов

Для того чтобы создать новый символ надо:

1. Выбрать пункт Символы;

Нажать кнопку ¹ Новый..., появится редактор символов.

📄 Примечание

Подробнее о работе в редакторе можно узнать в справочном пособии по работе с ГИС Zulu в разделе *Работа с векторными слоями Редактор структуры слоя Редактор символов*.

4.1.2.2. Редактирование символа в библиотеке символов

Для редактирования символа следует:

1. Щелчком левой кнопки мыши по символу выделить символ для редактирования;

2. Нажать кнопку Изменить... или дважды щелкнуть по символу. При этом открывается редактор символов для редактирования.

Примечание

Подробнее о работе в редакторе можно узнать в справочном пособии по работе с ГИС Zulu в разделе *Работа с векторными слоями Редактор структуры слоя Редактор символов*

4.1.2.3. Удаление символа из библиотеки

Чтобы удалить символ из библиотеки нужно:

- 1. Щелчком мыши выбрать символ;
- ^{2.} Нажать кнопку Удалить или кнопку Deleteна клавиатуре;
- 3. Нажать кнопку Сохранить.

4.1.2.4. Импорт символов из библиотеки других слоев

Символы можно импортировать из одного слоя в другой, т. е., если символы уже были созданы для другого слоя, то их можно скопировать в библиотеку нашего слоя, для этого надо:

В диалоговом окне Структура слоя (¹²⁸) в дереве выбрать пункт Символы;

2. Нажать кнопку [№] Операции • и в открывшемся списке выбрать Импорт.... (*рис.* «Импорт символов»).

Рисунок 4.5. Импорт символов

3. В открывшемся окне указать слой-источник, т.е. слой, из которого вы хотите импортировать символы и нажать кнопку Открыть. (см. *рис. «Диалог выбора слоя»*)

Открыть файл										8	23
Папка:	🐌 D:\piter\l	eploseti			•	G	ø	Þ	×		
Мои карты Серверы гео	🗃 Тепловые	сети									
Рабочий стол											
Компьютер	Объект: "Ten Файл: "teplos Тип файлов:	ловые сети' et.b00'' Слои Zulu	'' ı (*.600;*.zr	rs;*.zrg;*.zl;*.z	zww;*.z	:tr)		•		Откры Отме	на

Рисунок 4.6. Диалог выбора слоя

4. Все символы выбранного слоя появятся в верхнем списке символов, как на *рис.* «Окно импорта символов». В нижнем списке отображаются выбранные символы для импорта. Если вы случайно выбрали не тот слой-источник, нужно нажать на кнопку Выбор слоя, чтобы указать новый.

Импорт символов					X
Слой: D:\ycheba'	\teplo.b00				Выбор слоя
1	4			* III	Добавить Добавить все
1. Источник (работа)	2. Источник (отключен)	3. Тепловая камера	4. Разветвление		
5. Смена	6. Потребитель	7. Потребитель	8. Насосная	-	
					Исключить Исключить все
				Импортирова	ть Закрыть

Рисунок 4.7. Окно импорта символов

- 5. Щелчком мыши выбрать символ в верхнем списке;
- 6. Нажать кнопку Добавить или сделать двойной щелчок левой кнопкой мыши по символу. Выделенный символ появится в нижнем списке (см. *рис. «Окно импорта символов»*). Таким же образом добавить необходимые символы.

Импорт символо	в		X
Слой: D:\ycheb	a\teplo.b00]	Выбор слоя
21.	22. Обобщенный 23. Обобщенный потребитель (р потребитель (о	24. Групповой потребитель	Добавить Добавить все
25. Потребител ГВС включен	ь	II	
24. Групповой потребитель	25. Потребитель ГВС включен		Исключить Исключить все
		Импортиров	ать Закрыть

Рисунок 4.8. Окно импорта символов

- 7. Нажать кнопку Импортировать. Символы из нижнего списка, будут добавлены в библиотеку;
- 8. Нажать кнопку Закрыть;
- 9. В окне Структура слоя нажать кнопку Сохранить.

Описание кнопок диалога Импорт символов представлено ниже:

- Выбор слоя Кнопка выбора текущего слоя-источника. После выбора слоя символы из его библиотеки заполняют верхний список диалога.
- Добавить все Добавляет все символы из верхнего списка в нижний список.
- Добавить Добавляет текущий символ верхнего списка в нижний список. То же самое произойдет при двойном щелчке мыши на символ из верхнего списка.
- Исключить Исключает текущий символ из нижнего списка.
- Исключить все Очищает нижний список.
- Импортировать Добавляет все символы из нижнего списка в библиотеку символов слоя.
- Закрыть Закрывает диалог без импорта.

4.1.3. Базы данных

При выделении в окне Структура слоя пункта Базы данных выводится список всех подключенных к слою баз данных. (см. *рис. «Закладка Базы данных»*)

Файл Правка			
Сохранить Новый Удали	ить Отменить Вернуть Выход	Ораниски стравка	
🖥 Слой 🛨 Символы	Базы данных		
∼ Линии Ø Заливки	Название	Путь	ID
 Базы данных Примитивы Примитивы Источник Узел Потребитель Задвижка Задвижка Задвижка Участки Я Посселирующий узе ЦПП Перемычка Особщенный потреби Вспомогательный уча 	 Источник Узел Потребитель Насосная станция Задвижка Ччастки Ччастки Досселирующий узел ЦТП Перемычка Обобщенный потребитель 	D:\zulutestfiles\ctp\ctp_istok.zb D:\zulutestfiles\ctp\ctp_kamera.zb D:\zulutestfiles\ctp\ctp_uzvvod.zb D:\zulutestfiles\ctp\ctp_asos.zb D:\zulutestfiles\ctp\ctp_dD_ZADVIG D:\zulutestfiles\ctp\ctp_droxsel.zb D:\zulutestfiles\ctp\ctp_ctp.zb D:\zulutestfiles\ctp\ctp_op.zb	1 2 3 4 5 6 7 8 9 10

Рисунок 4.9. Вкладка «Базы данных»

Закладка Базы данных снабжена следующими командными кнопками:

Кнопка	Описание
Создать	Позволяет создать новую базу данных. При нажатии на эту кнопку появится окно Новая база данных, в строке Название базы данных надо вписать название вашей новой базы.

Кнопка	Описание
Добавить	Позволяет добавить уже готовую базу данных в структуру слоя. После нажатия открывается стандартное окно выбора файла, в котором надо указать какую базу данных вы хотите добавить и нажать кнопку Открыть.
Конструктор	Данная кнопка будет активна только в том случае, если в списке выделена база данных. Она открывает диалоговое окно Редактор баз данных, в котором имеется возможность отредактировать выделенную в списке базу данных.
Удалить	Удаляет из списка выделенную базу данных. Удаление произойдет только в том случае, если эта база данных не используется ни одним из типов структуры слоя.

📄 Примечание

Подробнее о создании и редактировании баз данных можно узнать в справочном пособии по работе с ГИС Zulu в разделе *Семантические базы* данных.

4.2. Типы и режимы объектов сети

Для моделирования тепловой сети используются типовые объекты (см. подробнее в справочном пособии ГИС Zulu в разделе *Общие сведения*|*Слои*). Создание типов и режимов, а также их редактирование происходит в диалоговом окне Структура слоя

Тип объекта определяет, какую функцию данный типовой объект должен выполнять, например Источник – является источником тепловой энергии, Потребитель – потребителем тепловой энергии и т.д. К типовым объектам может привязываться семантическая база данных.

Каждый типовой объект, в свою очередь, может иметь несколько режимов, которые задают различные способы работы (отображения) типового объекта. Например, тип объекта - задвижка, режимы работы – открыта и закрыта. Подробнее о режимах рассказывается в соответствующем разделе.

4.2.1. Типы объектов

Дерево типов и режимов находится в структуре слоя тепловой сети. При выделении левой кнопкой мыши типа объекта (например, источник), в дереве типов и режимов (*рис. «Вкладка Тип объекта»*) справа откроется вкладка, в которой отобразятся свойства выделенного типа.

Структура слоя - teploset *	23
Файл Правка	
🛃 🔡 🗡 Сохранить Новый Удал	 Сч Ш Отменить Вернуть Выход Справка
 Ща Слой ★ Символы ~ Линии Ø Заливки 	Источник - Типы и режимы Название: Источник ID: 1
(1) Базы данных № Примитивы Бранистивы Бранистивы В Сточник	 Осимвольный объект инженерных сетей
 Насосная станция Запечука 	 источник отсекающее устройство потребитель узел Линейный
 За Седолика 	участок. отсекающий Площадной
Неремычка З Перемычка З Обобщенный потреби З Обобщенный потреби З Спомогательный уча З Смотровая камера З Смотровая камера	База данных:
۰ III +	

Рисунок 4.10. Вкладка «Тип объекта»

На открывшейся вкладке диалога расположены следующие разделы:

- Название- В данной строке отображается название типа, оно же одновременно отображается в дереве типов;
- ID- Отображается ID выделенного типа, т.е. номер, который за данным типом закреплен. У каждого типа свой номер;
- Графический тип Типовые объекты могут быть символьными, линейными и площадными. Символьный тип имеет дополнительный признак объект инженерных сетей, наличие которого позволяет конкретизировать какие функции (источник, потребитель, простой узел или запорной устройство) этот тип выполняет.

Линейный тип имеет два дополнительных признака:

- участок— наличие этого признака позволит системе относиться к объектам такого типа как к участкам инженерной сети, т.е. при вводе потребует наличия на своих концах объектов символьного типа;
- отсекающий при установленном флажке, участок будет рассматриваться как отсекающее устройство, т. е. отключение на схеме можно будет производить участком.

4.2.1.1. Подключенная к типу база данных

Каждый типовой объект слоя использует свою семантическую базу данных. Например, на *рис. «Выбор базы данных»*, представленном ниже, в дереве типов и режимов выделен тип Потребитель, и видно, что в разделе База данных указана используемая этим типом база - Потребитель.

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Структура слоя - set	X
Файл Правка	
🛃 🖄 🖌 Х Сохранить Новый Удал	ить Отменить Вернуть Выход Справка
 Ща Слой ★ Символы ▲ Линии Даливки 	Потребитель - Типы и режимы Название: Потребитель ID: 3
 Базы данных Примитивы Типы и режимы 	Графический тип: © Символьный
на Источник на Усточник на Узел	 Объект инженерных сетей источник отсекающее устройство потребитель изел
 В Сарастики В Сарастки В Сарастки 	 Линейный участок отсекающий
 Дросселирующий узе	О Площадной
 В Обобщенный потреби Вспомогательный уча 	раза данных.
4	Насосная сталия Задвижка ФУчастки Дросселирующий узел

Рисунок 4.11. Выбор базы данных

4.2.1.2. Просмотр подключений к типу базы

1. Щелчком установить курсор на нужный тип объекта, например Потребитель. В строке *База данных* отобразиться название используемой базы данных, как показано на *рис. «Закладка Тип»*.

Структура слоя - teplosam		23
Файл Правка		
🚽 🔡 🖌 Сохранить Новый Удал	 С Отменить Вернуть Выход Справка 	
🔩 Слой	Источник - Типы и режимы	
★ Символы 🗠 Линии	Название: Источник ID: 1	
🥏 Заливки 🎯 Базы данных	Графический тип:	
时 💀 Примитивы	Оказания Символьный	
🖃 🦾 Типы и режимы	📝 объект инженерных сетей	
Н ИСТОЧНИК	🔘 источник 💿 отсекающее устройство	
на Потребитель	🔿 потребитель 🔘 чзел	
🗄 🗾 Насосная станция	C flower and	
🕀 🔝 Задвижка 🕀 🔁 Участки	участок отсекающий	
 Э Дросселирующий узе Э ЦТП 	🔿 Площадной	
🕀 🔝 Граница баллансовой	База данных:	
🕀 🔝 Узел учета	П Источник 🗸	
Наремычка		

Рисунок 4.12. Вкладка «Тип»

4.2.1.3. Замена используемой типовым объектом базы данных

1. Щелчком установить курсор на нужный тип объекта;

2. В строке База данных сделать щелчок, после чего появится выпадающий список, показанный на *рис. «Выбор базы данных»*.

Рисунок 4.13. Выбор базы данных

- 1. Выбрать нужную базу (база данных должна быть заранее создана) из списка. В выпадающем списке будут содержаться только базы данных слоя (те базы, которые видны при выборе пункта *Базы данных*);
- 2. Нажать кнопку Сохранитьна панели инструментов для сохранения изменений.

Примечание

Следует учитывать то, что различные типы объектов используют различные базы данных. В то же время, различные режимы работы одного и того объекта, используют одну и ту же базу данных. Например, режимы работы объектов типа Узел (Тепловая камера, Разветвление, Смена диаметра) используют одну базу данных Узел.

4.2.1.4. Создание нового типа объектов

Примечание

œ

В слое тепловых сетей можно создавать новые типы объектов только в том случае, если они не будут участвовать в расчетах.

Можно создать новые режимы работы для стандартных объектов, включенных в математическую модель тепловой сети.

Для создания нового типа объекта следует:

1. На панели инструментов окна Структура слоя нажать кнопку Новый... или пункт меню Правка|Новый тип... (см. *рис. «Создание нового типа»*).

Структура слоя - teploset	×
Файл Правка	
Сохранить Новый Удал	ить Отменить Вернуть Выход Справка
Пара Слой Новый тип	учник - Типы и режимы
Симв Новый режим Лини.	и зание: Источник ID: 1
🥏 Заливки 🎯 Базы данных	Графический тип:
 Примитивы Типы и режимы Усточник Узел Потребитель Насосная станция Заприжка 	 Символьный объект инженерных сетей источник отсекающее устройство потребитель узел Линейный
 В Участки Дросселирующий узе ЦПП ЦПП Д Перемычка З Обобщенный потреби В спомогательный уча 	участокогсекающий Площадной База данных: Источник
< >	ii.

Рисунок 4.14. Создание нового типа

2. В строке *Название* открывшейся закладки ввести пользовательское название типа, которое одновременно отобразится и в появившейся строке дерева типов. Например, Смотровая камера, как показано на *рис. «Название нового типа»*.

Структура слоя - teploset *	X
Файл Правка	
<mark> </mark>	 Сч Отменить Вернуть Выход Справка
🖳 Слой	Смотровая камера - Типы и режимы
🛨 Символы 🗸 🗸	Название: Смотровая камера ID: 14
🥏 Заливки 🎯 Базы данных	Графический тип:
时 Примитивы	💿 Символьный
😑 🗁 Типы и режимы	📝 объект инженерных сетей
H S Источник	🔿 источник 💿 отсекаюшее чстройство
н Z Эзел	
ногребитель Насосная станция	
Эладвижка	🔘 Линейный
🖽 🔁 Участки	участок отсекающий
표 🛐 Дросселирующий узе	🖳 Париграцой
🕀 🛐 ЦТП	О ПЛОЩАДНОИ
🕀 🔽 Перемычка	База данных.
🗄 🔝 Обобщенный потреби	
🕀 🖂 Вспомогательный уча	
🛛 Смотровая камера	
۰ III ا	

Рисунок 4.15. Название нового типа

- 3. Выбрать графический тип создаваемого объекта (если это объект инженерной сети, то необходимо определить какие функции он выполняет в сети: источник, потребитель, отсекающее устройство или узел). Как видно на следующем рисунке, Смотровая камера относится к типу узел;
- 4. Если надо, чтобы созданный тип использовал предварительно созданную базу данных, сделать щелчок левой кнопкой мыши по строке База данных и в

выпадающем списке выбрать нужную базу, как показано на *рис. «Выбор базы для нового типа»*. Если база данных этому типу не нужна, этот пункт можно не выполнять.

Структура слоя - teploset *			23
Файл Правка			
Сохранить Новый Удал	К ч) С [™]		
🖳 Слой	Смотровая камера - Типы и режимы		
★ Символы ∼ Линии	Название: Смотровая камера	ID: 14	
🥏 Заливки 🌍 Базы данных	Графический тип:		
🐺 Примитивы	Оказания Символьный		
□ □ Типы и режимы	объект инженерных сетей источник отсекающее устройство		
Потребитель	🔘 потребитель 💿 узел		
н 🗾 Насосная станция н 💽 Задвижка	Линейный		
 Н	Площадной		
🗄 🔽 Перемычка	База данных:		
🗄 🛐 Обобщенный потреби			
🕀 🖂 Вспомогательный уча	(нет базы данных)	-	
🛐 Смотровая камера	(нет базы данных)		
۰ اس اس ا	ши источник ШУЗер ШПотребитель	=	
	🛄 Насосная станция		зđ

Рисунок 4.16. Выбор базы для нового типа

- 5. Далее для созданного типа следует создать режимы его работы (отображения), подробнее об этом смотрите соответствующий раздел (*Создание нового режима*);
- 6. Нажать кнопку Сохранить.

4.2.1.5. Удаление типа

Для удаления существующего типа следует:

- 1. Установить курсор в дереве типов на удаляемый тип;
- 2. Нажать кнопку Удалитьна панели инструментов;
- 3. Нажать кнопку Сохранить.

🛡 Примечание

Тип можно удалить только тогда, когда он не имеет режимов.

4.2.1.6. Редактирование параметров уже существующего типа

Для редактирования параметров существующего типа надо:

- 1. Щелкнуть на строку с именем этого типа в дереве типов, в правой части окна откроется вкладка, относящаяся к выделенному типу;
- 2. Провести необходимые изменения;

3. Нажать кнопку Сохранить.

4.3. Режимы объектов

Любой объект, для его отображения на карте, должен иметь хотя бы один режим работы. Для стандартных объектов, включенных в математическую модель тепловой сети, режимы их работы созданы по-умолчанию.

Настройка отображения типовых объектов и режимом их работы:

Структура слоя - teploset *		X
Сохранить Новый Удали	 С П Отменить Вернуть Выход Справка 	
Слой Символы Линии Заливки Базь даннык Примитивы Гипы и режимы Гипы и режимы	Работа - Источник - Типы и режимы Название: Работа символ: размер: 100 🔹 цвет: состояние: Включен	Образец: ГСС Изменить Новый
 Задвижка Участки Дросселирующий ДГП Перемычка Обобщенный потри Вспомогательный 	 Масштабировать Не увеличивать больше указанного размера Ориентировать при вводе участков Поворачива 	ть на 90 град.

Рисунок 4.17. Вкладка «Режим символьного объекта»

Вкладка режима на *рис. «Вкладка Режим символьного объекта»* имеет следующие элементы управления:

• Кнопки Изменить и Новый - позволяют изменять существующее и создавать новое отображение выбранного режима в редакторе символов;

Примечание

Подробнее о работе в редакторе можно узнать в справочном пособии по работе с ГИС Zulu в разделе *Работа с векторными слоями Редактор структуры слоя Редактор символов*.

- Для регулирования размеров символов на карте вводится масштабирующий коэффициент, который задается в строке *Paзмеp*. Поскольку размеры символов из библиотеки символов задаются в относительных единицах (пикселях), то заранее неизвестно, какого размера они будут на той или иной карте, так как слой может создаваться для масштабов области, города, квартала, помещения. Чем больше значение коэффициента, тем крупнее будут выглядеть символы на карте (при одном и том же масштабе карты);
- Флажок *Масштабировать* включает режим масштабирования символа, т. е. изменение размеров символа при изменении масштаба карты;

- Флажок Не увеличивать больше указанного размера не позволяет увеличивать символ, когда масштаб карты становится меньше указанного в строке Размер;
- Флажок Ориентировать при вводе участков если этот флажок отмечен, то объекты наносятся по направлению ввода участков;
- Флажок Поворачивать на 90 град- поворачивает объект на 90 градусов относительно того, как он изображен в редакторе символов.

При задании режима для линейного типа, необходимо задать стиль вывода на экран, толщину на экране и толщину при печати (*рис. «Режим линейного объекта»*).

Структура слоя - teploset *		23
Файл Правка		
🛃 🤷 Уда Сохранить Новый Уда	Х < ७ < ८ <	
Слой Символы Линии Заливки Базы данных Примитивы Гилы и режины Гилы и реж	Включен - Участки - Типы и режимы Название: Включен Линии цвет: стиль: толщина на экране: 2 пкс толщина при печати: 0.1 мм Состояние: Включен	Образец:

Рисунок 4.18. Режим линейного объекта

4.3.1. Создание нового режима объекта

При необходимости можно добавить дополнительные режимы работы для стандартных типовых объектов.

Важно понимать, что не стоит без необходимости добавлять в сеть новые режимы. Новые режимы имеет смысл добавлять только в том случае, если надо визуально выделить объекты одного типа друг от друга. Т.е., если на карте необходимо чтобы участки тепловой сети отличались по цвету (например, при изображении четырёхтрубной сети), то тогда в тип Участки надо добавить четыре новых режима, причем, добавляя их надо соблюдать определенные правила!

Примечание

При создании нового режима следует учесть:

Для типовых объектов в окне Состояние выбирается проводимость для решения топологических задач. Однако для инженерных расчетов следует

добавлять объекты в определенной последовательности и по определенным правилам.

4.3.1.1. Состояние объектов сети

Для типовых объектов в окне Состояние выбирается свойства объекта для решения топологических задач. Типовому объекту инженерных сетей можно указать следующее свойство *Проводимости*:

- Включен-проводимость во всех направлениях;
- Отключен- нет проводимости;
- Прямая проводимость-существует проводимость от входящих по направлению участков к выходящим;
- Обратная проводимость существует проводимость от выходящих по направлению участков к входящим.

Свойство проводимости объекта (участка, задвижки) используется только при решении топологических задач.

4.3.1.2. Правила добавления режимов

4.3.1.2.1. Участки

Участки задаются четверками режимов, которые воспринимаются программой следующим образом:

Номера режимов	Состояние	
1, 5, 9 и т.д.	Включен	
2, 6, 10 и т.д.	Отключен	
3, 7, 11 и т.д.	Отключен трубопровод	обратный
4, 8, 12 и т.д.	Отключен трубопровод	подающий

Кроме этого для вновь созданных режимов работы объекта, следует указать в окне Состояние его проводимость, тогда режим будет добавлен правильно.

4.3.1.2.2. Потребители

Потребители задаются парами режимов, которые воспринимаются программой следующим образом: нечетный номер режима соответствует включенному состоянию, четный номер режима – отключенному.

Номера режимов	Состояние
1, 3, 5 и т.д.	Включен
2, 4, 6 и т.д.	Отключен

В случае отключения участка сети, все потребители, попавшие под отключение изменят режим работы на отключенный (перейдут в режим с номером на единицу больше), при обновлении состоянии сети.

4.3.1.2.3. Задвижки

Задвижки задаются парами режимов, которые воспринимаются программой следующим образом: нечетный номер режима соответствует открытому состоянию, четный номер режима – закрытому.

Номера режимов	Состояние
1, 3, 5 и т.д.	Открыта
2, 4, 6 и т.д.	Закрыта

Кроме этого для вновь созданных режимов работы объекта, следует указать в окне Состояние его проводимость, тогда режим будет добавлен правильно.

4.3.1.3. Последовательность действий по добавлению режима

Для создания нового режима следует:

1. В дереве Типы и режимы щелчком левой кнопкой мыши выделите тип, для которого создается новый режим, например Узел. (см. *рис. «Создание нового режима»*).

Рисунок 4.19. Создание нового режима

2. Нажать кнопку Новый... и в выпадающем списке выберите пункт Новый... режим или пункт меню Правка Новый режим... На экране появится следующее окно (см. *рис. «Параметры нового режима»*).

Структура слоя - teploset		23
Файл Правка		
Сохранить Новый Удалить	Сч П @ Отменить Вернуть Выход Справка	
🖳 Слой 🗖 Н	овый режим #4 - Узел - Типы и режимы	
★ Символы ~ Линии	азвание: Новый режим #4 Обра:	зец:
☑ Заливки (1) Базы данных №* Примитивы	символ:	
 Признатери Пипы и режимы 		
🖃 😰 Узел 🔟 Тепловая камера 🗉	размер: 100 👻 цвет: 🗾 💌 Изи	менить
Разветвление Смена диаметра Новый режим #4	н	овый
на Потребитель		
 	Масштабировать	
 	пе увеличивать оольше указанного размера Ориентировать при вводе участков Поворачивать на 90) град.
 		

Рисунок 4.20. Параметры нового режима

- 3. В строке название введите название режима, например **Граница** балансовой принадлежности;
- 4. Если режим задается для символьного типа, то из выпадающего списка символов нужно выбрать тот символ, которым будет отображаться режим.

Если символ, соответствующий требуемому режиму отображения отсутствует, символ следует создать в редакторе символов - кнопка Новый (подробнее см. справку по ГИС Zulu раздел *Создание и редактирование графического символа объекта. Редактор символов*). Если существующий символ по каким-то критериям не подходит для отображения режима, его можно отредактировать нажатием кнопки Изменить (подробнее см. справку по ГИС Zulu раздел *Создание и редактирование и редактирование графического символа объекта. Редактирование символов*).

Если режим задается для объекта инженерных сетей (участок или задвижка), которые могут являться отсекающими устройствами, тогда необходимо в окне Состояние выбрать соответствующую для данного режима проводимость.

Для символьного объекта также надо задать:

- размер, он задается в строке *размер* (подробнее см. справку по ГИС Zulu раздел Изменение размеров символов);
- состояние (Включен/Отключен), состояние задается только в том случае, если тип является объектом инженерных сетей: источником, или потребителем;
- при желании установить опцию *Масштабироватьь*, в этом случае включается режим масштабирования символа, т. е. изменение размеров символа при изменении масштаба карты;

- при желании установить опцию *Не* увеличивать больше указанного размера, она не позволяет увеличивать символ, когда масштаб карты становится меньше указанного в строке размер;
- при желании установить опцию Ориентировать при вводе участков, в этом случае объекты будут наноситься по направлению ввода участков;
- при желании установить опцию Поворачивать на 90 град., она поворачивает объект на 90 градусов относительно того, как он изображен в редакторе символов.

Для линейного графического типа объекта так же надо задать:

- цвет, он выбирается из открывающейся палитры;
- из списка *стиль* выбрать, стиль линии, если необходимого стиля нет в наличии, то его можно создать (см. справку по ГИС Zulu раздел *Создание и редактирование стиля линейных объектов*);
- указать толщину на экране (толщина указывается в пикселях);
- указать толщину при печати (толщина указывается в миллиметрах).

Райл Правка	
🛃 🖹 - 🗙 юхранить Новый Удали	гь Отменить Вернуть Выход Справка
В Слой ▲ Символы ▲ Символы ↓ Символы ↓ Линии ↓ Заливки	Граница балансовой принадлежности - Узел - Типы и режимы Название: Граница балансовой принадлежности Образец:
🧐 Базы данных № Примитивы 🖃 🧽 Типы и режимы 🛞 😰 Источник	символ:
 З Узел Тепловая камера Е Разветвление Смена диаметра Граница балансов 	размер: 50 🚖 цвет: 🗾 💌 Изменить Новый
 З Потребитель Задвижка Задвижка Участки Дросселирующий узе ДГП Перемычка Обобщаники ототобо 	 Масштабировать Не увеличивать больше указанного размера Ориентировать при вводе участков Поворачивать на 90 град.

Рисунок 4.21. Создание нового режима

5. Для сохранения изменений структуры слоя нажать кнопку Сохранить.

4.3.2. Изменение размеров символов тепловой сети

Размеры символов задаются в относительных единицах, поэтому заранее неизвестно, какого размера они будут на той или иной карте, так как слой может создаваться для масштабов области, города, квартала, помещения. Для регулирования размеров

символов на карте вводится масштабирующий отображение символов коэффициент, который задается в строке *Размер*. Чем больше значение коэффициента, тем крупнее будут выглядеть символы на карте (при одном и том же масштабе карты).

Для изменения размера символа тепловой сети следует:

1. В окне структура слоя () в дереве Типы и режимы щелчком левой кнопкой мыши выделить режим, для редактирования, например Задвижка Открыта (см. *рис. «Изменение размера символа тепловой сети»*).

Рисунок 4.22. Изменение размера символа тепловой сети

- 2. В строке Размеризменить значение;
- 3. Нажать кнопку Сохранить. Изменения сразу отобразятся на карте.

4.3.3. Изменение внешнего вида символов тепловой сети

Для изменения внешнего вида объекта тепловой сети следует:

1. В окне структура слоя () в дереве Типы и режимы щелчком левой кнопкой мыши выделить режим, для редактирования, например Тепловая камера. (см. *рис. «Изменение внешнего вида объекта тепловой сети»*).

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Структура слоя - teploset *	X
Файл Правка	
🛃 🗟 Сохранить Новый Уд	Х У С° Д @ алить Отменить Вернуть Выход Справка
🖏 Слой ★ Символы ~ Линии	 Тепловая камера - Узел - Типы и режимы Название: Тепловая камера Образец:
 Заливки Базы данных Примитивы Примитивы 	символ: Тепловая камера 🗸
 Этилы и режины Этилы и режины и режины Этилы и	размер: 100 🚖 цвет: 🗖 Изменить Новый
а Смена диамен,	
🕱 Открыга 🕱 Закрыга 🕀 🏹 Участки	 Масши асиривать Не увеличивать больше указанного размера Ориентировать при вводе участков Поворачивать на 90 град.
 	

Рисунок 4.23. Изменение внешнего вида объекта тепловой сети

2. Нажать кнопку Изменить. На экране появится редактор символов, (см. *рис. «Окно редактора символов»*).

Редактор символов	8 X
🖬 % 🖻 🛍 × い 여 🕅 🗩 🗩 🧶	
Arial • 14 • X K <u>U</u> A	
▶°► ~ □ ■ ○ ● ⊾ ヽ ⊨ ~ T % %	i 🔜 🍰 + -
	ID 3 Название: Тепловая камера Точка привязки Х: 0 Y: 0 Привязка к сетке Шаг сетки 1 Пиксел Ф Х: 0.00 Y: 0.00

Рисунок 4.24. Окно редактора символов

- 3. В редакторе символов нарисовать новое изображение объекта;
- 4. Нажать кнопку Сохранить и закрыть редактор;
- 5. При необходимости в строке Размерзадать необходимый размер;
- 6. Для сохранения структуры слоя нажать кнопку Сохранить.

4.3.4. Удаление режима

- 1. Выделить удаляемый режим левой кнопкой мыши;
- 2. Нажать кнопку Удалить на панели инструментов.

🕞 Примечание

Режим можно удалить только тогда, когда он не занят объектами, т.е. ни в одном слое нет объектов этого режима.

4.3.5. Импорт типов и режимов

В программе имеется возможность импортировать из других слоев структуры отдельных типов с относящимися к этим типам режимами, символами и структурами баз данных.

Для импорта типов надо:

1. В дереве редактора структуры слоя встать на пункт Типы и режимы, нажать кнопку Импортировать типы. (см. *рис. «Импорт типов»*).

Рисунок 4.25. Импорт типов

- 2. В появившемся диалоге Импорт типов выбрать слой, из которого будут копироваться типы, для этого надо воспользоваться кнопкой ...;
- 3. В списке типов выбранного слоя отметить типы для импорта, и завершить импорт нажатием кнопки Импорт. (см. *рис. «Выбор типов для импорта»*).

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Импорт	гипов		23
Слой:	Теплосети г. N D:\ycheba\teplo.b00		
	,		🔳 Bce
_Исто	руник		
Потр	ребитель		
Haco	осная станция		
Учас	тки		
Дрос	сселирующий узел		
Пере	емычка		
	бщенный потребитель эмогательный участок		
Смот	гровая камера		
	- 0		
		Импорт	Отмена

Рисунок 4.26. Выбор типов для импорта

Примечание

При копировании структур табличных баз данных на данный момент реализовано создание таблиц только в формате Paradox.

4.3.6. Пример создания режима для уже существующего типа «Узел»

Предположим нам надо добавить новый объект, который будет называться Граница балансовой принадлежности. Для его добавления следует:

- 1. Выделить левой кнопкой мыши в дереве тип Узел, нажать на панели инструментов диалога кнопку **№ Новый**... и в выпадающем списке указать Новый режим или выбрать пункт меню Правка|Новый режим....;
- 2. В появившейся закладке Режим в строке *Название* ввести название создаваемого режима: **Граница балансовой принадлежности**;
- 3. Нажать кнопку Новый, после чего появится окно Редактор символов, в котором надо создать новый символ для нашего режима. Для этого на панели Редактор символов

следует нажать кнопку 🕒 – ввод многоугольника;

4. На панели форматирования задать параметры создаваемого объекта (для контура шш: цвет, узор, толщина, цвет и стиль линии);

- 5. В рабочем поле окна редактора нарисовать символ;
- 6. В строке *Название* ввести пользовательское название символа (Граница балансовой принадлежности);
- 7. При необходимости изменить точку привязки (центр) символа.

Рисунок 4.27. Создание нового режима

8.

9.

Нажать кнопку Сохранить () и закрыть окно редактора. Созданный режим отобразятся в дереве типов и режимов окна Структура слоя.

Рисунок 4.28. Граница балансовой принадлежности

Сохранить структуру слоя - кнопка Сохранить 🛃.

4.4. Печать объектов, входящих в структуру слоя

Для печати объектов входящих в структуру слоя надо:

1. Выбрать в меню Файл пункт Печать... (см. *рис. «Печать структуры слоя»*), после чего на экране появится окно отчета по структуре слоя. В открывшемся окне можно задать настройки для отчета.

Рисунок 4.29. Печать структуры слоя

2. Написать имя заголовка указать параметры шрифта в закладке Заголовок (см. *рис. «Отчет по структуре слоя»*).

Заголовок	Стали	Размесы	Страница
	Cititat	1 animper	c.be.acti
Введите та	экст заго	оловка отче	ета:
Тепловая	сеть		
Парамет	ры шрич	рта	
Парамет	ры шрия	pra Times New F	Roman : 12n7.
Парамет	ры шрия	PTa Times New F	Roman : 12n7.
Парамет Выбрат	ры шрич ъ) 🛛	pra Times New F	Roman : 12nr. 📰 📰
Парамет Выбрат	ры шрия ъ]	рта Firmes New F	Roman : 12n7. 📰 📰
Парамет Выбрат	ры шрия	PTa Times New F	Roman : 12n7. 📰 📰
Парамет Выбрат	ры шрич	Dimes New F	Roman : 12nт.
Выбрат	ры шрия	pra Times New F	Roman : 12n7. 📰 📰

Рисунок 4.30. Отчет по структуре слоя

- 3. В закладке Стилизадать стили для печати, выбрать параметры шрифта, и отметить галочками те элементы, которые надо включить в отчет (типы, режимы, базы);
- 4. Установить размеры для объектов, в закладке Размеры;
- 5. Настроить параметры страниц для печати, в закладке Страница;
- 6. Нажать кнопку Просмотр, для предварительного просмотра отчета. Если все настройки устраивают, то нажать кнопку Печать. Для отмены нажать кнопку Отмена.
Глава 5. Ввод объектов сети

Наносить схему тепловой сети можно либо на заранее подготовленную подоснову, либо на чистую карту. При нанесении схемы на можно использовать вспомогательные функции:

- привязка к объектам, сетка редактора;
- ортогональный ввод;
- ввод точек по координатам,

🖻 Примечание

Подробное описание данных функций смотрите в руководстве пользователя ГИС Zulu.

Для занесения сети на карту нужно, чтобы бы слой тепловой сети был создан и загружен в карту.

- «Создание слоя тепловой сети»
- «Загрузка слоя в карту»

После нанесения сети или для готовых ее участков можно провести операции контроля ошибок ввода. Подробнее о проверке ошибок ввода « Контроль ошибок при вводе».

5.1. Включение режима редактирования слоя

Перед нанесением схемы тепловой сети необходимо сначала включить режим редактирования слоя. В этом режиме происходит ввод и редактирование объектов сети.

Для включения режима редактирования следует:

Первый способ:

1.

Выбрать пункт главного меню Карта Редактор слоя или нажать кнопку И на панели инструментов;

2. Если карта содержит только один слой, то этот слой сразу станет редактируемым. Если же в карте несколько слоев, то на экране появится список слоев карты (см. *рис. «Выбор слоя для редактирования»*). Выбор слоя для редактирования, в котором нужно левой кнопкой мыши выбрать слой, выбрать слой с тепловой сетью и нажать кнопку OK.

Выберите слой для расчета	? 🗙
Кварталы города N	ОК
ај здания города N Система теплоснабжения	Отмена
	Справка
🔲 Показывать имена <u>ф</u> айлов	

Рисунок 5.1. Выбор слоя для редактирования

Второй способ включения редактирование слоя:

Нажать кнопку с карандашиком напротив имени слоя в окошке активного слоя

🔄 Пример тепловой сети 🛛 💣 🝠 👻

Кнопка примет утопленное состояние Пример тепловой сети Г . После включения редактора слоя в строке состояния внизу экрана отобразится имя редактируемого слоя Правка: Пример тепловой сети

5.2. Последовательность действий при вводе

Для изображения сети можно пользоваться двумя способами:

- Если известны координаты узловых объектов, таких как тепловые камеры, источники и т.д., то можно сначала расставить эти объекты на карте и затем соединить их участками.
- Изображать сеть с помощью объекта Участок. Тогда при вводе участка редактор сам будет запрашивать узловые объекты в начале и в конце участка, а поскольку часто начало нового участка является концом предыдущего, то начальный узел нового участка уже существует, и за него нужно только зацепится, то есть, продолжая ввод участка, нажать на узле левой клавишей мыши;

🖯 Примечание

Используя для рисования режим Участка, требуется гораздо меньше действий из-за того, что не приходиться постоянно выбирать объект для ввода. Используя один лишь режим участка, изображаются все элементы сети.

Далее приведены примеры изображения тепловой сети этими двумя способами. Например, нужно ввести фрагмент сети Источник->Камера->Насос->Потребитель.

5.2.1. Ввод узловых объектов сети

Если использовать второй способ, то последовательность действий должна быть следующей:

- Включить режим редактирования слоя ♥
- 2.

Нажать кнопку выбор типа ^ч и в выпадающем списке выбрать режим источника Работа (т.е. включен), см. *рис.* "3".

Рисунок 5.2. Выбор режима источника

3. Щелкнуть в том месте карты, где будет установлен источник.

Рисунок 5.3. Ввод источника

4. Нажать кнопку выбор типа ^{то}и в выпадающем списке выбрать режим узла Тепловая камера;

5. Щелкнуть в том месте карты, где будет камера, см. рис. "3".

Рисунок 5.4. Ввод камеры

- 6. Нажать кнопку выбор типа ¹ и в выпадающем списке выбрать режим насосной станции Работа(т.е. включена);
- 7. Щелкнуть в том месте карты, где будет изображена насосная станция, см. рис. "3"

Рисунок 5.5. Ввод насосной станции

- 8. Нажать кнопку выбор типа 🛂 и в выпадающем списке выбрать режим потребителя Включен;
- 9. Щелкнуть в том месте карты, где будет потребитель.

Рисунок 5.6. Ввод потребителя

10. Нажать кнопку выбор типа и в выпадающем списке выбрать режим участка Включен(т.е. открыты оба трубопровода);

- 11.Щелкнуть левой кнопкой мыши по источнику, «зацепившись» за него;
- 12.Сделать двойной щелчок по тепловой камере для соединения её с источником;
- 13.Аналогичным образом соединить оставшиеся элементы, см. рис. "3".

Рисунок 5.7. Ввод оставшихся элементов

Предупреждение

Устанавливать таким образом объекты на уже нарисованные участки сети нельзя. Их следует вставлять объекты только в режиме Узлы 🏊.

5.2.2. Ввод тепловой сети с помощью участка

Геометрически участок представляет собой ломаную линию. Любая ломаная имеет как минимум две вершины – начало и конец участка. Вершины ломаной между началом и концом участка называются точки перелома, с помощью которых обозначают повороты участка, компенсаторы. На участке может быть неограниченное количество точек перелома. При рисовании участка возможны все вспомогательные функции, что и при изображении ломаной линии. (см. подробнее в руководстве по ГИС Zulu).

Рисунок 5.8. Изображения участка сети

Участок должен обязательно начинаться и заканчиваться узловым объектом. Например, оба участка на *рис. «Изображения участка сети»* начинаются тепловой камерой и заканчиваются потребителем. Подробнее об участке можно прочитать в разделе «Участок»

Для ввода участка тепловой сети надо выполнить следующие действия:

1. Нажать кнопку выбор типа ^{то} и выбрать объект для ввода (например, режим участка Включен).

Примечание

При необходимости вновь вводить ранее выбранный режим работы участка

достаточно нажать кнопку на панели инструментов (если она еще не нажата). Кнопка примет утопленное положение, и редактор перейдет в режим ввода линейных объектов.

2. В начале участка обязательно должен присутствовать символьный объект. Если начальный объект участка уже установлен на карте, то участок надо к нему присоединить. Для этого нужно подвести курсор мыши к центру объекта и нажать левую клавишу мыши. При этом, если присоединение к узлу прошло успешно, то первая точка участка будет зафиксирована, и можно продолжить ввод остальных точек участка.

Примечание

Никакого всплывающего окна при этом появлятся не должно. Всплывающее окно означает что: а) привязки к объекту не произошло b) попытка привязаться туда, где нет узлового объекта. Для закрытия открывшегося окна следует сделать щелчок левой кнопкой мыши по карте или нажать клавишу Esc. В этих случаях надо повторить попытку привязаться к объекту, либо внедрить объект на существующий участок.

Если начального символьного объекта участка еще нет, то участок можно начинать в произвольной точке. Для этого нужно подвести курсор мыши в точку карты, соответствующую будущему началу участка, и нажать левую клавишу мыши. После этого редактор попросит указать тип начального узла. На экране появится список типов и режимов узловых объектов редактируемого слоя. Из этого списка нужно выбрать узел, в котором будет начинаться участок (например, источник или тепловая камера.) Таким образом, начиная участок в произвольной точке, мы попутно добавляем в сеть и новый узел;

- 3. После того как задана начальная точка участка, можно продолжить его ввод, последовательно задавая точки поворота. Для этого надо подвести курсор мыши к точке на карте, соответствующей очередной точке поворота, и зафиксировать ее нажатием левой клавиши мыши. После того как точки поворота введены, или при отсутствии их у данного участка, можно завершать ввод трубопровода;
- 4. В конце участка обязательно должен быть узловой объект. Если конечный объект уже имеется на карте, то надо подвести курсор к центру такого объекта и дважды щелкнуть левой клавишей мыши. Никакого всплывающего окна при этом, не должно появиться. Если захват узла прошел успешно, то ввод участка будет завершен.

Если конечного символьного объекта участка еще нет, то участок можно закончить в произвольной точке. Для этого нужно подвести курсор мыши в точку карты, соответствующую будущему концу участка, и дважды щелкнуть левой клавишей мыши. После этого редактор попросит указать тип конечного узла. На экране появится список объектов слоя с учетом их возможных режимов работы. Из этого списка нужно выбрать объект, в котором будет заканчиваться участок (например, потребитель, тепловая камера и т.д.) Таким образом, завершая участок в произвольной точке, мы попутно добавляем в сеть и новый узел.

! Важно

Во время завершающего ввод двойного щелчка левой клавишей мыши, важно, чтобы сама мышь между щелчками оставалась неподвижной, т.е щелчки надо сделать быстро. В противном случае будет установлена точка перелома участка. Также можно сделать щелчок правой кнопкой мыши и выбрать из меню Завершить объект, для завершения объекта в последней точке перелома.

5.2.2.1. Ввод точек перелома (поворота) участка

Для ввода точек перелома участка во время изображения участка следует:

- 1. Подвести курсор к месту на карте, где будет установлена точка перелома (например, поворот);
- 2. Щелкнуть левой кнопкой мыши для установки точки перелома и можно дальше продолжать ввод. см. *рис. «Изображение точек перелома»*

Рисунок 5.9. Изображение точек перелома

5.2.2.2. Отмена введенных точек

Во время нанесения участка на карту, если участок последняя из введенных точек была введена ошибочно, то ее можно отменить нажатием клавиши Esc или щелкнув правой кнопкой мыши выбрать в открывшемся окошке Отменить последнюю точку Esc.

Повторяя это действие, можно шаг за шагом отменить несколько последних введенных точек, или вообще все точки, включая начало участка.

5.2.2.3. Ввод за пределами экрана

Если местоположение очередной вводимой точки выходит за пределы окна карты на экране, то изображение нужно сперва передвинуть так, чтобы место установки точки попало в окно карты. Переместить изображение, не выходя из режима ввода участка, можно нескольким способами:

- 1. Использовать кнопки вертикальной и горизонтальной полосы прокрутки карты;
- 2. При установке предыдущей точки перелома, т.е. нажатии левой клавиши мыши, не отпускать эту клавишу, и в таком состоянии переместить мышь за пределы окна карты в сторону где должна быть установлена очередная точка. При этом изображение карты начнет прокручиваться в заданном направлении. Прокрутив карту на нужное расстояние, завершите прокрутку, отпустив левую клавишу мыши и продолжайте ввод участка;
- 3. Если у мыши имеется средняя клавиша (или средняя клавиша с колесиком), то можно перемещать карту мышкой, удерживая среднюю клавишу в нажатом

состоянии, при этом курсор мыши изменит свой вид и будет выглядеть как рука
Для завершения перемещения нужно среднюю клавишу отпустить.

5.2.2.4. Отмена ввода объектов

Если участок был завершен и, оказалось, что он введен ошибочно, то последний

введенный участок можно отменить нажатием кнопки 🧖. Повторяя эту операцию можно отменить несколько последних действий редактора.

Если отмена последних действий редактора была ошибочна, то их можно восстановить нажатиями кнопки

Примечание

При выключении режима редактирования слоя данных кнопок становится невозможным.

(🎾) использование

Глава 6. Редактирование сети

В данном разделе рассмотрены варианты редактирования (удалить, переместить, изменить режим работы объектов), которые могут применяться непосредственно к объектам тепловой сети. Об остальных операциях редактирования можно узнать в справке по ГИС Zulu.

Внешний вид любого введенного или еще не введенного объекта тепловой сети может быть изменен.Изображения объектов сети меняются в окне редактора структуры слоя (для дополнительных сведений о редакторе структуры слоя Структура слоя). Все изменения относятся сразу ко всем объектам в слое тепловой сети.

🖻 Примечание

Для того чтобы отредактировать сеть необходимо, чтобы был включен режим

редактирования слоя (²²). Как включить режим редактирования слоя см. раздел Ввод объектов сети.

Редактирование сети может осуществляться в виде:

- редактирования одиночных объектов; « Редактирование одиночных объектов »
- редактирования элементов объекта. « Редактирование элементов объекта»

6.1. Редактирование одиночных объектов

В режиме редактирования одиночных объектов выполняются операции, относящиеся к объекту (узлу или участку сети) целиком:

- Перемещение объекта;
- Поворот символьного объекта;
- Дублирование одиночного объекта;
- Смена режима, типа объекта;
- Смена направления участка тепловой сети;
- Удаление объекта;
- Разбиение участка на два узловым объектом;
- Объединение последовательно соединенных участков.

6.1.1. Перемещение объекта

Переместить объект можно двумя способами: с сохранением топологических связей или с отрывом объекта от сети. В первом случае изменяется только местоположение

объекта, а связность объектов сети не нарушается, т.е. топология сети не изменяется. Во втором случае нарушается связь перемещаемого объекта с сетью, поэтому такое перемещение объекта, как правило, используется как промежуточная операция.

Для перемещения объекта с сохранением связей нужно:

- 1. Выбрать стрелку Объект, нажав кнопку **К** панели инструментов;
- 2. Установить курсор на перемещаемый объект (символ или участок);
- 3. Нажать левую клавишу мыши и, не отпуская ее, начать перемещение (см. *рис. «Перемещение объекта с сохранением связи»* b).

Рисунок 6.1. Перемещение объекта с сохранением связи

- 4. Переместить объект в новое положение;
- 5. Отпустить левую клавишу мыши, для завершения перемещения (см. *рис. «Перемещение объекта с сохранением связи»* с).

В результате видно, что объект переместился с сохранением топологической связи.

Для перемещения объекта с отрывом от сети нужно:

1.

Выбрать стрелку Объект, нажав кнопку на панели инструментов;

- 2. Установить курсор на перемещаемый объект (символ или участок);
- 3. Нажать и не отпускать клавишу Shift;
- 4. Нажать левую клавишу мыши и, не отпуская ее, начать перемещение. (см. *рис.* «Перемещение объекта с отрывом от сети» b). После начала перемещения клавишу Shift можно отпустить.

Рисунок 6.2. Перемещение объекта с отрывом от сети

5. Переместить объект в новое положение;

6. Отпустить левую клавишу мыши, для завершения перемещения. (см. *рис. «Перемещение объекта с отрывом от сети»* с).

🔊 Примечание

Эта операция используется как промежуточная (например, для внедрения другого объекта вместо убранного.

В результате объект был перемещен, при этом топологическая связь участков с этим объектом нарушилась.

6.1.2. Поворот символьного объекта

Поворот символа узлового объекта не изменяет местоположение объекта ни тем более топологию сети. Просто иногда возникает необходимость повернуть символ, под определенным углом для улучшения наглядности и читаемости изображения сети.

Для поворота символа нужно:

1.

Выбрать стрелку Объект, нажав кнопку на панели инструментов;

2. Выделить определенный символьный объект. Для этого нужно установить на него курсор и нажать левую клавишу мыши. Символ выделится прямоугольной областью с небольшим кружком в одном из ее углов. (см. *рис. «Поворот узлового объекта»* b).

Рисунок 6.3. Поворот узлового объекта

- 3. Подвести курсор к кружку в углу выделенной области и нажать, не отпуская, левую клавишу мыши;
- 4. Перемещая мышь, поворачивайте символ до нужного угла. (см. *рис. «Поворот узлового объекта»* с);
- 5. Отпустить левую клавишу мыши, для завершения перемещения. (см. *рис. «Поворот узлового объекта»* d).

6.1.3. Дублирование одиночного объекта

Дублирование объекта является одним из способов создания нового объекта. В качестве исходного отмечается один из существующих объектов слоя, и на указанном месте создается новый объект с тем же типом, режимом и той же формы, что и исходный. Действия при дублировании объекта почти полностью совпадают с перемещением объекта с отрывом от сети. Для дублирования объекта нужно:

Для дублирования объекта нужно:

1. Выбрать стрелку Объект, нажав кнопку **на** панели инструментов;

- 2. Установить курсор на исходный объект;
- 3. Нажать левую клавишу мыши и, не отпуская ее, начать перемещение.

Переместить объект в новое положение. Не отпуская кнопку мыши, нажать клавишу Ctrl, рядом с курсором появится 🛨.

Отпустить левую кнопку мыши. После этого клавишу Ctrl можно отпустить. Исходный объект будет продублирован в новое место.

6.1.4. Смена типа или режима объекта

Часто возникает необходимость изменить один объект сети на другой, или изменить режим его работы. Например, превратить узел в тепловую камеру или сменить режим участка на Отключен.

Для смены типа/режима объекта нужно:

1.

Выбрать стрелку Объект, нажав кнопку на панели инструментов;

2. Установить курсор на определенный объект и дважды щелкнуть левой клавишей мыши. На экране появится диалог Смена режима (см. *рис. «Смена режима для узлового объекта»*).

Смена режима	8 23
Тип: Источник Узел	
Потребитель Насосная станция	
Задвижка ЦТП Перемычка Обобщенный потребитель	
Режим:	
Открыта Закрыта	ОК
	Отмена
	Справка

Рисунок 6.4. Смена режима для узлового объекта

- 3. В верхней части окна выбрать тип объекта. Например, Задвижка;
- 4. Выбрать режим для объекта в нижней части окна. Например, Закрыта;
- 5. Нажать кнопку ОК для сохранения изменений и выхода. Для отказа от изменений нажать кнопку Отмена.

Примечание

Кнопка Сменить направление появляется только если изменяемый объект - участок. Нажатие кнопки изменяет направление участка на противоположное.

6.1.5. Смена направления участка тепловой сети

Для смены направления участка следует:

1. Выбрать стрелку Объект, нажав кнопку **К**на панели инструментов;

2. Установить курсор на определенный участок и дважды щелкнуть левой клавишей мыши. На экране появится диалог Смена режима (см. *рис. «Смена режима для узлового объекта»*).

Смена режима	8 23
Тип: Участки Вспомогательный участок	
	Сменить направление
Режим:	
Включен	
<u>Uтключен</u> Отключ. обратный тр-д Отключ. подающий тр-д	ОК Онмена Справка

Рисунок 6.5. Смена режима для узлового объекта

- 3. Нажать кнопку Сменить направление. Нажатие кнопки меняет направление участка на противоположное;
- 4. Нажать кнопку ОК. Для отказа от изменений нажать кнопку Отмена.

6.1.6. Удаление объекта

Для удаления объекта нужно:

Выбрать стрелку Объект, нажав кнопку ▶ панели инструментов;

2. Отметить удаляемый объект. Для этого нужно установить на него курсор и нажать левую клавишу мыши. Отмеченный объект изменит цвет;

Нажать клавишу Del на клавиатуре или кнопку 🔀 панели инструментов. Также можно сделать щелчок правой кнопкой мыши и выбрать Удалить.

^{3.}

Выделенный объект удалится.

6.1.7. Разбиение участка на два узловым объектом (Ввод объекта на существующую сеть)

Всегда возникает необходимость вставить объект на уже введенный участок сети. Сделать это можно в любой точке участка, кроме начала и конца. При вставке объекта на существующий участок, этот участок разбивается на два участка: один перед объектом, другой после.

Для разбиения участка нужно:

- Выбрать стрелку Узлы, нажав кнопку панели инструментов;
- 2. Отметить точку вставки на участке, для этого подвести курсор к предполагаемой точке разбиения и нажать левую клавишу мыши. Место на отрезке отобразится кружком, в точке перелома квадратиком (см. *рис. «Вставка объекта на существующую сеть»* b);
- Нажать кнопку * на панели инструментов или щёлкнув правой кнопкой мыши выбрать Вставить символьный объект. Окроется всплывающее окошко объектов редактируемого слоя;
- 4. Из списка объектов выбрать нужный и нажать левую клавишу мыши. Выбранный объект будет изображен на схеме. (см. *рис. «Вставка объекта на существующую сеть»* с).

Рисунок 6.6. Вставка объекта на существующую сеть

6.1.8. Объединение последовательно соединенных участков (Удаление объекта с нанесенной сети)

Если на сети установлен объект, который связан только с двумя участками (*puc.* «*Удаление объекта с нанесенной сети»*), то его можно удалить, таким образом, что два связанных с ним участка объединятся в один, а на месте удаленного узла будет точка перелома объединенного участка.

В отличие от простого удаления объекта (через Del) при котором нарушается связанность, в этом случае, несмотря на изменение топологии (сеть уменьшается на один узел и одно ребро), связность сети не нарушается, т.к. происходит объединение участков.

Для объединения участков с общим узлом нужно:

- Выбрать стрелку Узлы, нажав кнопку панели инструментов;
- 2. Отметить удаляемый узел. Подвести курсор к узловому объекту и нажать левую клавишу мыши (см. *рис. «Удаление объекта с нанесенной сети»* b).

Рисунок 6.7. Удаление объекта с нанесенной сети

3. Нажать кнопку **с** на панели инструментов либо щёлкнуть правой кнопкой мыши и выбрать Исключить символьный объект. (см. *рис. «Удаление объекта с нанесенной сети»* с).

Примечание

Если число связей отмеченного узла отлично от двух, ничего не произойдет. В противном случае узел удалится, и два участка превратятся в один.

6.2. Редактирование элементов объекта

Под редактированием элементов объекта подразумеваются операции с участием отдельных элементов участков, таких как отрезки и точки перелома:

- Перемещение узла;
- Перемещение отрезка;
- Добавление точки перелома;
- Удаление точки перелома;
- Перепривязка участка.

6.2.1. Перемещение узла

Любой уже нанесенный на карту узел можно переместить. Для того, чтобы перенести узел нужно:

1. Выбрать стрелку Узлы, нажав кнопку на панели инструментов;

2. Подвести курсор к узлу и нажать левую клавишу мыши. (см. *рис. «Перемещение узла»* b).

Рисунок 6.8. Перемещение узла

- 3. Не отпуская клавишу переместить узел на нужное место (см. *рис. «Перемещение узла»* с);
- 4. Отпустить клавишу мыши для окончания перемещения узла. (см. *рис. «Перемещение узла»* d);
- Точно таким же образом можно перенести любой символьный объект, только при выполнении пункта 2 надо обязательно попасть в точку привязки объекта (как правило – это центр объекта).

6.2.2. Перемещение отрезка

Любой нанесенный отрезок, участок сети можно перенести с одного места на другое. Для переноса отрезка надо:

- 1. Выбрать стрелку Узлы, нажав кнопку на панели инструментов;
- 2. Для переноса отрезка вместе со связанными с ним объектами подвести курсор к отрезку и нажать левую клавишу мыши, не отпуская клавишу переместить отрезок на нужное место (см. *рис. «Перемещение отрезка»* b);
- 3. Отпустить клавишу мыши для окончания перемещения отрезка (см. *рис. «Перемещение отрезка»* с).

Рисунок 6.9. Перемещение отрезка

6.2.3. Добавление точки перелома

На любом нанесенном участке сети можно создать перелом двумя способами. Для создания точки перелома первым способом необходимо:

- 1. Выбрать стрелку Узлы, нажав кнопку панели инструментов;
- 2. Отметить точку разбиения на участке. Подвести курсор к предполагаемой точке перелома и нажать левую клавишу мыши. Место перелома на отрезке отобразится кружком (см. *рис. «Добавление точки перелома»* а);
- 3. Нажать кнопку на панели инструментов или щёлкнуть правой кнопкой мыши и выбрать Добавить точку перелома. На участке появится точка перелома (см. *рис. «Добавление точки перелома»* b).

Второй способ создания точки перелома:

1. Выбрать стрелку Узлы, нажав кнопку панели инструментов;

2. Подвести курсор к предполагаемой точке перелома и, удерживая клавишу Ctrl, нажать левую клавишу мыши (см. *рис. «Добавление точки перелома»* b.

Рисунок 6.10. Добавление точки перелома

3. Была создана новая точка перелома на участке, после чего при необходимости участок сети можно изогнуть (*рис. «Добавление точки перелома»* с).

6.2.4. Удаление точки перелома

Ошибочно введенный или лишний узел на участке можно удалить, либо указывая удаляемую точку на карте, либо указывая ее в панели свойств. Для удаления точки перелома первым способом нужно:

- 1. Выбрать стрелку Узлы, нажав кнопку панели инструментов;
- 2. Отметить удаляемый узел, для этого подвести курсор к удаляемому узлу и нажать левую клавишу мыши. Отмеченный узел будет выделен квадратом черного цвета (см. *рис. «Удаление точки перелома»* b);
- 3.

Нажать кнопку панели инструментов или клавишу Delete клавиатуры, либо щелкнуть правой кнопкой мыши и выбрать Удалить точку перелома. Точка перелома будет удалена и участок автоматически выпрямится. (см. *рис. «Удаление точки перелома»* с).

Рисунок 6.11. Удаление точки перелома

Возможен второй способ удаления точки перелома:

1. Нажать кнопку Панель свойств 🖻. В правой части экрана появится окно Свойства;

2. Выбрать стрелку Узлы, нажав кнопку панели инструментов;

- Подвести курсор к участку, на котором находится удаляемая точка, и нажать левую клавишу мыши, в окне свойств отобразятся параметры участка: координаты начальной, конечной и промежуточных точек, длина и азимут промежуточных отрезков;
- 4. Перемещаясь в окне свойств, точки соответствующие строке, на которой находится курсор, будут выделяться черным квадратом;
- 5. Поставить курсор на строку, характеризующую удаляемую точку и нажать на клавиатуре комбинацию клавиш Ctrl+Delete. (см. *рис. «Удаление точки перелома из Панели свойств»* b);
- 6. Выделенная точка и строка, соответствующая ей удалится, а отрезок выпрямится (см. *рис. «Удаление точки перелома из Панели свойств»* с).

6.2.5. Перепривязка участка

Для перепривязки участка от одного объекта к другому необходимо:

1. Выбрать стрелку Узлы, нажав кнопку Ганели инструментов;

- 2. Отметить щелчком перепривязываемый участок, щелкнув по нему левой кнопкой мыши. На отмеченном участке будет отмечены точки перелома (см. *рис. «Перепривязка участка»* а);
- 3. Подвести курсор к узлу участка, который необходимо «оторвать» от сети и удерживая клавишу Shift на клавиатуре нажать левую клавишу мыши.

Примечание

Клавиша Shift в данном случае используется для того, чтобы «оторвать» участок от объекта.

Рисунок 6.13. Перепривязка участка

- 4. Удерживая левую клавишу мыши и Shift отвести участок в сторону (см. *рис. «Перепривязка участка»* b). Таким образом, мы отцепили участок от объекта;
- 5. Щелчком левой кнопкой мыши «ухватиться» за конечную точку участка. Не отпуская клавишу мыши и удерживая клавишу Ctrl на клавиатуре подвести конец

участка к узлу привязки, при этом вид курсора изменится на следующий (см. *рис. «Перепривязка участка»* с);

6. Отпустить клавишу мыши для окончания перепривязки участка (см. *рис. «Перепривязка участка»* d).

Примечание

Клавиша Ctrl в данном случае используется для того, чтобы участок «прицепился» к объекту.

6.3. Контроль ошибок при вводе

Для проверки правильности нанесения схемы тепловой сети необходимо произвести проверку ее связности, для определения все ли узлы и участки связаны между собой. Проверку можно производить как для полностью нанесенной сети, так и для готовых ее частей.

Для проверки надо:

- 1. Сделать активным слой тепловой сети;
- 2.
 - На панели навигации нажать Поиск пути 🌋;
- Левой клавишей мыши установить флажок на любом объекте тепловой сети (кроме участков);

4. Нажать правую клавишу мыши и в появившемся меню (см. *рис. «Поиск связанных объектов»*) выбрать пункт Найти связанные. Все найденные объекты сети, в соответствии с выбранным пунктом меню поиска, окрасятся в красный цвет.

	Найти путь
	Найти связанные
	Найти связанные по направлению
	Найти связанные против направления
	Найти кольца
	Найти несвязанные
₩	Отменить все
	Отменить флаги
	Отменить результат
	Отменить последний флаг

Рисунок 6.14. Поиск связанных объектов

5.

Для отмены результатов поиска нажать Отмена пути 隊.

Можно найти все связанные объекты сети по направлению от узла, на котором был установлен флажок, или против направления, для этого в меню выбрать пункт Найти связанные по направлению или Найти связанные против направления.

Следует учитывать, что направление участка определяется при его вводе, то есть направление участка будет от начальной точки ввода к конечной точке. Также можно Найти несвязанные объекты. Для поиска колец тепловой сети выбрать в меню пункт Найти кольца. Все найденные объекты сети, в соответствии с выбранным пунктом меню поиска, окрасятся в красный цвет.

Глава 7. Настройки расчетов и вкладка Сервис

Основные настройки проводимых расчетов задаются во вкладках соответствующего диалогового окна. Чтобы открыть диалог настройки расчетов выполните следующие действия:

1. Выполните команду главного меню Задачи|ZuluThermo, либо нажмите кнопку

панели инструментов. Откроется панель выполнения теплогидравлических расчетов (см. *рис. "Панель теплогидравлических расчетов"*).

ZuluThermo	_ * ×
Система централизованного тепл	оснабжени Слой)
Наладка Поверка Температ	урный график Конструкторский Сервис
 С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета 	⊡ • 🗹 Система централизованного теплоснабжени ≟ • 🗹 Котельная № 1
	Раскраска
Расчет Настройки	Справка Закрыть

Рисунок 7.1. Панель теплогидравлических расчетов

- 2. Нажмите кнопку Слой..., выберите слой тепловой сети в открывшемся диалоге и нажмите кнопку ОКчтобы подтвердить выбор и закрыть диалог;
- 3. Далее нажмите кнопку Настройки, откроется диалог настройки расчетов для выбранного слоя (см. рис. "Диалог настройки расчетов. Вкладка").

араметры гидравли	ческого расч	ета		23		
Протокол расчета	Раскраска	ГВС	Исходные дани	ные Hasp		
Тепловые потери	Потери на	пора	Теплоноситель Утечки			
Коэффициент м	естных тепло	вых поте	рь (D <= 0.15 м)	1.2		
Коэффициент	местных тепло	овых пот	ерь (D > 0.15 м)	1.15		
	омпенсироват	ь теплов	ые потери расход	om 🔲		
Ν	Лаксимальный	относит	ельный расход	1.2		
	Минималь	ный диаг	иетр сопла, мм	3		
	Минимальн	ный диам	етр шайбы, мм	3		
	οκ ο	тмена	Применить	Справка		

Рисунок 7.2. Диалог настройки расчетов. Вкладка «Тепловые потери»

Настройка различных параметров расчетов подробно описывается в последующих подразделах.

7.1. Настройка расчета тепловых потерь

Параметры расчета тепловых потерь настраиваются во вкладке Тепловые потери диалога настройки расчетов (см. *см. "Панель теплогидравлических расчетов"*):

- В полях Коэффициент местных тепловых потерьзадаются коэффициенты местных тепловых потерь, учитывающие тепловые потери арматурой, компенсаторами, неподвижными опорами;
- При установленном флажке Компенсировать тепловые потери расходом тепловые потери компенсируются увеличением расхода теплоносителя. Максимальное увеличение расхода задается в поле;

Например, при значение 1.2 в поле Максимальный относительный расход, расход теплоносителя может быть увеличен не более чем на 20%;

- В поле Минимальный диаметр соплазадается минимальный диаметр подбираемого сопла элеватора;
- В поле Минимальный диаметр шайбызадается минимальный диаметр подбираемых дросселирующих шайб.

7.2. Настройка расчета потерь напора

Параметры расчета потерь напора теплоносителя задаются во вкладке Потери напора диалога настройки расчетов (см. *рис. "Диалог настройки расчетов. Вкладка `"*).

Тараметры гидравлич	еского расче	ета			
Протокол расчета	Раскраска	FBC	Исходны	е данные	Hasp
Тепловые потери	Потери на	пора	Теплонос	итель	Утечки
Расчет коэффициен	та гидравличе	ского тр	ения по фор	рмуле	
Колбрука-Уайта		•			
Максимальный нап минимально необхо	ор, гасимый с одимого)	оплом (в	долях от	2	-
Запас наг	пора на запол	нение си	стемы, м	5	
Максимально допус	тимое давлен	ие в обра	тнике, м	60	
Корректировать	номер элеват	ора			
0	к О	тмена	При <u>м</u> ен	ить	Справка

Рисунок 7.3. Диалог настройки расчетов. Вкладка ^{*}«Потери напора»

- Формула для расчета коэффициента гидравлического трения выбирается в поле с соответствующим названием. Возможен расчет коэффициента трения по формулам Альтшуля, Шифринсона, Никурадзе, Кульбрука-Уайта;
- В поле Максимальный напор, гасимый соплом (в долях от минимально необходимого)задается максимальный избыточный напор который может быть погашен соплом элеватора. По умолчанию установлено значение 2, это значит, что соплом элеватора будет погашен напор, в два раза превышающий минимально необходимый;
- В поле Запас напора на заполнение системы, мзадается запас напора на заполнение системы;
- В поле Максимально допустимое давление в обратнике, муказывается максимально допустимое давление в обратном трубопроводе. При его превышении, в результате расчета отображается предупреждающее сообщение;
- При установленном флажке Корректировать номер элеватора, оптимальный номер элеватора подбирается по следующей номограмме. (*рис. "Номограмма для выбора элеватора"*).

Рисунок 7.4. Номограмма для выбора элеватора

7.3. Выбор и настройка параметров теплоносителя

Тип используемого теплоносителя и его параметры задаются во вкладке Теплоноситель диалога настройки расчетов (см. *рис. "Диалог настройки расчетов.* Вкладка").

араметры гидравли	ческого расч	ета			23
Протокол расчета	Раскраска	ГВС	Исход	ные данные	Hasp
Тепловые потери	Потери на	пора	Теплон	оситель	Утечки
Вода			•	Редактирова	ть
Плотность воды в г	юдающем тру	бопровод	е (т/м3)	0.975	
Плотность воды в	обратном труб	бопроводе	е (т/м3)	0.975	
📝 В поверочном ра	асчете опреде	лять плот	ность по	температур	е
Температура полки	,°C: 70				
	ок С	тмена	Прим	енить	Справка

Рисунок 7.5. Диалог настройки расчетов. Вкладка «Теплоноситель»

• В поле со списком в верхней части вкладки выбирается жидкость, которая является теплоносителем.

Параметры всех заведенных в систему теплоносителей хранятся в справочнике по теплоносителям. В с правочник можно добавлять и удалять теплоносители, редактировать параметры уже заданных теплоносителей. Для редактирования

справочника теплоносителей нажмите кнопку Редактировать справа от поля. Подробнее о работе со справочником Раздел 19.4, «Справочник по теплоносителям»;

- В полях Плотность воды в подающем и Плотность воды в обратномзадается средняя плотность воды в подающем и обратном трубопроводах для наладочного расчета;
- При поверочном расчете программа сама может вычислить плотность теплоносителя в зависимости от температуры, для этого необходимо установить флажок Определять плотность по температуре;
- В поле Температура полкиуказывается минимальная температура теплоносителя в подающем трубопроводе. Для закрытых систем теплоснабжения не менее 70°С, для открытых систем теплоснабжения не менее 60°С.

7.4. Настройка расчета утечек

Параметры расчета утечек задаются во вкладке Утечки диалога настройки расчетов.

Параметры гидравли	ческого расч	ета		23
Протокол расчета	Раскраска	ГВС	Исходные данные	Hasp
Тепловые потери	Потери на	пора	Теплоноситель	Утечки
Доля	утечки из теп	ловой се	ти 0.25%	
Доля утечки из с	истем теплопо	треблен	ия 0.25 %	
	ок о	тмена	При <u>м</u> енить (Справка

Рисунок 7.6. Диалог настройки расчетов. Вкладка «Утечки»

В полях Доля утечки из тепловой сети и Доля утечки из систем теплопотребления задаются доли нормативных утечек из тепловой сети и систем теплопотребления, соответственно.

По умолчанию установлены нормируемые утечки составляющие 0,25% от объема тепловых сетей или систем теплопотребления.

7.5. Настройка протоколирования отчета

Параметры ведения протокола расчетов задаются во вкладке Протокол расчета диалога настройки расчетов (см. *рис. "Диалог настройки расчетов. Вкладка "*).

Параметры гидравлического расчета 🛛 🔀						
Тепловые потери	Потери напора		Теплоноситель	Утечки		
Протокол расчета	Раскраска	FBC	Исходные данные	e Hasp		
 Не выводить протокол расчетов ЦТП Не выводить сообщения о ненайденых полях результатов Не выводить сообщения об участках без узлов Не выводить сообщения о выключенных потребителях Отключить расчет баланса по теплу и воде Искоритората, сообщения по мотрицителя 						
 Включать в расчет тупики без нагрузки Автоматически изменять направления участков Очищать поля объектов, не связанных с источниками 						
Точность по расхода	Точность по расходам, т/ч: 0.001					
Точность по температуре, °C: 0.05						
	к о	тмена	При <u>м</u> енить	Справка		

Рисунок 7.7. Диалог настройки расчетов. Вкладка «Протокол расчета».

В закладке Протокол расчета можно задать опции протоколирования проведения расчетов.

- При установленном флажке Не выводить протокол расчетов ЦТП, в протоколе не выводятся данные расчета по всем ЦТП;
- При установленном флажке Не выводить сообщения о не найденных полях результатов, в протоколе не выводятся сообщения об отсутствующих полях в таблицах и базах данных по объектам;
- При установленном флажке Не выводить сообщения об участках без узлов, не выводятся предупреждения об участках не имеющих связи с объектом в начальном или конечном узле;
- При установленном флажке Не выводить сообщения о выключенных потребителях,
 не отображаются предупреждения наличии в сети потребителей не связанных с источниками;
- При установленном флажке Отключить расчет баланса по теплу и водене выполняется проведение расчета баланса выработанного и затраченного количества тепла и теплоносителя;
- При установленном флажке Игнорировать сообщения по источникамрасчет доводится до конца, вне зависимости от наличия неполадок на источнике;
- При установленном флажке Включать в расчет тупики без нагрузкивыполняется расчет ветвей с участками, не оканчивающимися потребителями или перемычками.
 Определяются напоры в узлах этих ветвей. Если в кольце закрыта задвижка, то в

результате записываются напоры с разных сторон задвижки. Температура в узлах тупиковых ветвей не определяется;

- При установленном флажке Автоматически изменять направления участковпрограмма при завершении гидравлического расчета может автоматически изменять направления участков в соответствии с направлением движения теплоносителя по подающему трубопроводу;
- При установленном флажке Очищать поля объектов, не связанных с источниками, у объектов не участвовавших в расчетах, данные во всех полях результатов обнуляются.

7.6. Настройка раскраски

Параметры отображения тематической раскраски участков трубопроводов после проведения расчетов задаются во вкладке Раскраска диалога настройки расчетов (см. *рис. "Диалог настройки расчетов. Вкладка "*). Подробнее о тематической раскраске Раздел 18.1, «Раскраска с помощью встроенных фильтров».

Параметры гидравлі	ического расч	ета		×
Тепловые потери	Потери на	пора	Теплоноситель	Утечки
Протокол расчета	Раскраска	ГВC	Исходные данны	e Hasp
Температура пода Температура обр	ающего трубоп атного трубопр	ровода Ювода		
Скорость движе	ния теплоноси	теля		
Время движения	я воды от источ	ника		
Напор в подаю	щем трубопров	оде		
Напор в обрат	ном трубопров	оде		
Располаг	аемый напор			
Удельн	ње потери			
	ок о	тмена	При <u>м</u> енить	Справка

Рисунок 7.8. Диалог настройки расчетов. Вкладка «Раскраска»

7.7. Настройка расчета ГВС

Параметры расчетов потребления горячей воды задаются во вкладке ГВС диалога настройки расчетов (см. *рис. "Диалог настройки расчета. Вкладка "*).

Іараметры гидравлич	еского расч	ета			23	
Тепловые потери	Потери на	пора	Te	плоноситель	Утечки	
Протокол расчета	Раскраска	LBC	V	Ісходные данные	e Hasp	
Учитывать неравномерность потребления горячей воды Наладочный расчет Поверочный расчет Конструкторский расчет Конструкторский расчет						
СНиП 2.04.02-84			•	Просмотр		
Наладка последовательных схем на отопительный расход Брать долю на циркуляцию по среднему расходу на ГВС						
ОК Отмена Применить Справка						

Рисунок 7.9. Диалог настройки расчета. Вкладка «ГВС».

• В группе настроек Учитывать неравномерность потребления горячей воды задаются параметры учета неравномерности потребления горячей воды. Коэффициент часовой неравномерности потребления горячей воды рассчитывается в зависимости от количества жителей, которое необходимо указать при заполнении исходной информации по потребителям тепловых сетей.

Флажками Наладочный расчет, Поверочный расчет, Конструкторский расчет указываются типы расчетов в которых учитывается неравномерность потребления.

В поле со списком Коэффициенты часовой неравномерности выбирается нормативный документ на основе которого расчитывается коэффициент – СНиП 2.04.02-84, СП41-101-95, Вологодская РЭК. Графики зависимостей коэффициента от числа жителей можно просмотреть, нажав кнопку Просмотр справа от поля (см. *рис. "Коэффициенты часовой неравномерности"*).

Рисунок 7.10. Коэффициенты часовой неравномерности

- В поле со списком Наладка последовательных схем навыбирается способ проведения наладки: на отопительный расход, или на суммарный расход на СО и ГВС. Требуемый способ выбирается пользователем в зависимости от использованной методики подбора поверхности нагрева теплообменных аппаратов;
- В поле со списком Брать долю на циркуляцию выбирается величина, от которой расчитывается доля циркуляция воды (от среднего расхода воды на ГВС, или от средней тепловой нагрузки на ГВС, *см. "Задание способа вычисления циркуляционного расхода воды на ГВС"*). Выбранная величина вводится в поле *Ксirc*базы по потребителям.

7.7.1. Задание способа вычисления циркуляционного расхода воды на ГВС

В предыдущих версиях ZuluThermo доля циркуляции воды на ГВС задавалась как доля от расчетного расхода воды на ГВС в процентах (расчетный расход воды вводился в поле *Kcirc* базы по потребителям).

 $G_{circ} = 0.01 * K_g * Q_{gv} * C/(T_{gv} - T_{hv}), (1)$ где

К_д - доля от расхода на ГВС в процентах

G_{circ} - расход на циркуляцию

 Q_{gv} - тепловая нагрузка на ГВС

С - удельная теплоемкость

T_{gv} - температура горячей воды

 T_{hv} - температура холодной воды

Пользователи, привыкшие брать долю воды на ГВС в **процентах от тепловой** нагрузки на ГВС, должны были перед занесением исходных данных в поле *Kcirc* делать несложный пересчет исходя из того, что

$$G_{circ} = 0.01 K_q Q_{gv} C/(T_{gv}-T_{circ}), (2)$$
 где

К_q - доля от нагрузки на ГВС в процентах

 T_{circ} - температура воды на выходе из циркуляционной линии

В ZuluThermo 7.0 пользователь сам может назначать, какая именно доля будет браться для вычисления циркуляционного расхода из поля *Kcirc*: доля расхода на ГВС (1) или доля от нагрузки на ГВС (2)

По умолчанию, для совместимости с предыдущими данными, программа ведет расчет по первой формуле.

7.8. Настройка использования исходных данных

Параметры исходных данных используемых для расчетов задаются во вкладке Исходные данные диалога настройки расчетов (см. *рис. "Настройки расчета. Вкладка "*).

Гепловые потери	Потери на	пора	Теплоноситель	Утечки
Протокол расчета	Раскраска	FBC	Исходные данные	Hasp
🔽 Принимать по у	молчанию дани	ные для у	частков	
ллиной не боле	a 1	м		
длиной не обле				
	DO VUBOTKOB:	6		
TUITOBBLE OU BERTBL	фія участков.	0		
Залациал темпера:	บกล ดดีกลรมดดั	DO OLI DOO	ADADIHAUULIV DATAADI	
Заданная темпера	тура обратной	воды для	обобщенных потреб	ителей
Заданная температ	тура обратной расчет	воды для	обобщенных потреб	ителей
Заданная температ Наладочный р Поверочный р	тура обратной расчет расчет	воды для	обобщенных потреб	ителей
Заданная темпера Наладочный р Поверочный р	тура обратной расчет расчет	воды для	обобщенных потреб	ителей

Рисунок 7.11. Настройки расчета. Вкладка «Исходные данные»

- При установленном флажке Принимать по умолчанию данные для участков в расчетах не учитываются участки, длина которых не превышает значение указанное в поле длиной не более. Кроме того, для таких участков не требуется заносить дополнительную информацию;
- В поле Типовые объекты для участков через точку с запятой указываются ID типов объектов структуры слоя, которые являются участками тепловой сети (например

6;14;25). Это позволяет разносить по типам трубопроводы разного назначения (участки магистрали, участки ГВС и т.д);

 Для построения более адекватной модели при использовании обобщенных потребителей (ОП) доступна возможность задания пользователем температуры воды на выходе из обобщенного потребителя. Для учета фактической температуры воды в обратном трубопроводе в наладочном или поверочном расчетах, следует установить флажок напротив нужного пункта.

7.9. Настройка HASP

Настройка опроса сетевого ключа НАЅР выполняется во вкладке НАЅР диалога настройки расчетов (см. *рис. "Настройки расчета. Вкладка Наsp."*). Функция включается/выключается установкой/снятием флажка Производить опрос сетевого ключа.

Параметры гидравлич	неского расч	ета		
Тепловые потери	Потери на	пора	Теплоноситель	Утечки
Протокол расчета	Раскраска	ГВС	Исходные данн	ные Hasp
🔲 Производить опр	оос сетевого к	ключа		
	ок о	тмена	Применить	Справка

Рисунок 7.12. Настройки расчета. Вкладка «Наѕр».

Флажок обязательно должен быть установлен при использовании сетевого ключа (красного), в противном случае расчет производиться не будет. При использовании локального ключа (фиолетового), данный флажок обязательно должен быть снят.

7.10. Настройка используемых единиц измерения

Нагрузку можно заносить как в Гкал/ч, так и в МВт. Для выбора используемых единиц измерения нагрузок:

1. Откройте диалог ZuluThermo, выполнив команду главного меню Задачи|ZuluThermo

или нажав кнопку 🔁 панели инструментов;

- 2. Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге и нажмите кнопку ОКчтобы подтвердить выбор и закрыть диалог;
- 3. Откройте вкладку Сервис диалога ZuluThermo и нажмите кнопку Единицы измерения. Откроется диалог выбора единиц измерения (см. *рис. "Окно переключения единиц измерения."*);

Единицы измерения	and the second	X
Тепловые нагрузки	Гкал/час Гкал/час МВт	ОКОтмена

Рисунок 7.13. Окно переключения единиц измерения.

4. Выберите требуемые единицы измерения нагрузок в поле Тепловые нагрузки и нажмите кнопку ОК.

7.11. Вкладка Сервис

Вкладка Сервис панели теплогидравлических расчетов представлена на следующем рисунке.

ZuluThermo		_ • ×
Система теплоснабжения		Слой
Наладка Поверка Температ	урный график Конструкторский	Сервис Danfoss
Длины участков с карты	Создать новую сеть	
Отметки высот с карты	Обновить структуры таблиц	
Начала и концы участков	Единицы измерения	
Калькулятор	Расчет тепловых потерь	
Расчет Настройки	Справка Закрыть	

Рисунок 7.14. Вкладка Сервис

На данной вкладке расположены следущие кнопки:

• Длины участков с карты - кнопка считывания длины участков с карты. Подробнее смотрите раздел Раздел 17.1, «Автоматическое занесение длины с карты»

- Отметки высот с карты кнопка считывание геодезических отметок со слоя рельефа. Подробнее смотрите раздел Раздел 17.3, «Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»
- Начала и концы участков кнопка считывания имени начала и конца участков. Подробнее смотрите раздел Раздел 17.2, «Автоматическое занесение начала и конца участков»
- Создать новую сеть кнопка создания нового слоя тепловой сети
- Обновить структуры таблиц кнопка обновления структуры таблиц (после обновлений). Подробнее смотрите раздел Глава 20, Как получить обновление?
- Единицы измерения кнопка смены единиц измерения. Подробне смотрите раздел Раздел 7.10, «Настройка используемых единиц измерения»
- Расчет тепловых потерь кнопка запуска расчета годовых нормативных тепловых потерь.

Глава 8. Наладочный расчет

8.1. Цель расчета

Целью наладочного расчета является качественное обеспечение всех потребителей, подключенных к тепловой сети необходимым количеством тепловой энергии и сетевой воды, при оптимальном режиме работы системы централизованного теплоснабжения в целом.

В результате наладочного расчета определяются номера элеваторов, диаметры сопел и дросселирующих устройств (для потребителей, ЦТП и кустовых шайб), а также места их установки.

Расчет проводится с учетом различных схем присоединения потребителей к тепловой сети и степени автоматизации подключенных тепловых нагрузок. При этом на потребителях могут устанавливаться регуляторы расхода, нагрузки и температуры. На тепловой сети могут быть установлены насосные станции, регуляторы давления, регуляторы расхода, кустовые шайбы и перемычки.

Смотрите также:

- основные исходные данные для наладочного расчета («Основные исходные данные для выполнения наладочного и поверочного расчетов»);
- настройки расчета (Настройки расчетов);
- запуск расчета («Запуск расчета»);
- результаты наладочного расчета (Раздел 8.3, «Результаты наладочного расчета»);
- пример проведения наладочного расчета (см. "Пример наладочного расчета").

8.2. Знакомство с панелью расчетов

Перед запуском расчета познакомимся с панелью теплогидравлических расчетов (см. Рисунок 8.1, «Знакомство с панелью расчетов»).

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

	ZuluThermo)					_ • ×	
	Система тег	плоснабже	ния				Слой	3
1	-Наладка	Поверка	Температ	урный график	Конструкторский	Сервис	Danfoss	
0	 ✓ С учето ✓ С учето ✓ С учето ✓ С учето ✓ По н ○ По н Гашение и ○ Дроссе ○ Соплон 	ом ГВС ом утечек ом тепловь норм. поте изоляции избыточног ельными ш и элеватор	іх потерь рям ю напора іайбами а	 Систем Кот Ц1 Ц1 Кот 	иа теплоснабжения гельная №1 ГП - 2 ГП - 1 ГП - 3 гельная Западная			-4
6				Раскраска 🤇	iet>			6
7	Расчет	Had	стройки	Справка	Закрыты			

Рисунок 8.1. Знакомство с панелью расчетов

- 1. Вкладка выбора вида расчета
- 2. Выбор параметров расчета
- 3. Кнопка выбора слоя
- 4. Окно выбора источника для расчета
- 5. Выбор встроенных тематических раскрасок для анализа расчета
- 6. Кнопка для открытия окна настроек расчетов
- 7. Кнопка запуска расчета

8.3. Запуск расчета

! Важно

Прежде чем запускать расчет, внимательно проверьте настройки расчетов (*см.* "*Настройки расчетов*").

Для запуска наладочного расчета:

1.

Выполните команду главного меню Задачи|ZuluThermo или нажмите кнопку панели инструментов. Откроется диалог теплогидравлических расчетов (см. *рис.* "Вкладка").

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

ZuluThermo	_ * ×
	Слой
Наладка Поверка Температурный график	Конструкторский Сервис Danfoss
 С учетом ГВС С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Гашение избыточного напора Дроссельными шайбами Соплом элеватора 	
Раскраска 🤇	iet≻ ▼
Расчет Настройки Справка	Закрыть

Рисунок 8.2. Вкладка «Наладка» диалога теплогидравлических расчетов

- 2. Перейдите на вкладку Наладка диалога;
- 3. Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (см. *рис. "Окно выбора слоя"*) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог;

Выберите слой для расчета	? 🔀
Кварталы города N	ОК
Пристема теплоснабжения	Отмена
	Справка
Показывать имена файлов	بر

Рисунок 8.3. Окно выбора слоя

4. Отметьте источник, для которого будет производиться расчет и установите флажок напротив соответствующего названия. (см. *рис. "Выбор источника для расчета"*)

ZuluThermo	_ * X	
Система теплоснабжения	Слой	
Наладка Поверка Температ С учетом ГВС С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Гашение избыточного напора О Дроссельными шайбами	урный график. Конструкторский Сервис Danfoss 	
 Соплом элеватора Раскраска (нет> Расчет Настройки Справка Закрыть 		

Рисунок 8.4. Выбор источника для расчета

- 5. В левой части диалогового окна задайте параметры проводимого расчета, установив флажки напротив необходимых параметров:
 - С учетом ГВС проводить ли расчет с учетом открытого ГВС;
 - С учетом утечек проводить ли расчет с учетом нормативных утечек в тепловой сети;
 - С учетом тепловых потерь проводить ли расчет с учетом тепловых потерь. Дополнительно требуется выбрать способ учета: с учетом нормативных тепловых потерь или потерь через изоляцию;
 - Гашение избыточного напора с помощью дроссельных шайб или сопла элеватора.
- 6. Нажмите кнопку Расчет.

Если в ходе занесения исходной информации какие-либо данные необходимые для расчета не были внесены или внесены неверно, то при проведении расчетов в окне сообщений программа выдаст уведомление об ошибке Рисунок 8.5, «test» (красным цветом). Программа следит не только за наличием необходимой информации, но и за ее логической верностью, то есть, если Вы впишете диаметр участка более 1.4 м, то программа выдаст ошибку.

Рисунок 8.5. Ошибка при запуске расчета

- 1. Окно Сообщения
- 2. Сообщение об ошибке
- 3. Окно базы данных объекта, у которого обнаружена ошибка
- 4. Поле базы данных с ошибочным значением
- 5. Объект с ошибкой в данных

При отсутствии ошибок в данных или конфигурации сети программа выполнит расчет выбранной сети и заполнит результаты расчета в таблицы для каждого типа объекта тепловой сети. Протокол расчета будет отображаться в нижней части экрана в панели Сообщения. В случае ошибок они в протоколе будут выделены красным цветом (более подробно о возможных ошибках Возможные ошибки расчетов).

Глава 9. Поверочный расчет

9.1. Цель расчета

Целью поверочного расчета является определение фактических расходов теплоносителя на участках тепловой сети и у потребителей, а также количества тепловой энергии получаемой потребителем при заданной температуре воды в подающем трубопроводе и располагаемом напоре на источнике.

Созданная математическая имитационная модель системы теплоснабжения, служащая для решения поверочной задачи, позволяет анализировать гидравлический и тепловой режим работы, а также прогнозировать изменение температуры внутреннего воздуха у потребителей. Расчеты могут проводиться при различных исходных данных, в том числе при аварийных ситуациях, например, отключении отдельных участков тепловой сети, передачи воды и тепловой энергии от одного источника к другому по одному из трубопроводов и т.д. В качестве теплоносителя может использоваться вода, антифриз или этиленгликоль.

Расчёт тепловых сетей можно проводить с учётом:

- утечек из тепловой сети и систем теплопотребления;
- тепловых потерь в трубопроводах тепловой сети;
- фактически установленного оборудования на абонентских вводах и тепловых сетях.

В результате расчета определяются расходы и потери напора в трубопроводах, напоры в узлах сети, в том числе располагаемые напоры у потребителей, температура теплоносителя в узлах сети (при учете тепловых потерь), температуры внутреннего воздуха у потребителей, расходы и температуры воды на входе и выходе в каждую систему теплопотребления. При работе нескольких источников на одну сеть определяется распределение воды и тепловой энергии между источниками. Подводится баланс по воде и отпущенной тепловой энергией между источником и потребителями. Определяются зоны влияния источников на сеть

Смотрите также:

- основные исходные данные для поверочного расчета («Основные исходные данные для выполнения наладочного и поверочного расчетов»);
- настройки расчета (Глава 7, Настройки расчетов);
- запуск расчета (Раздел 9.2, «Запуск расчета»);
- расчет аварийной ситуации (Раздел 9.3, «Расчет аварийных ситуации»);
- результаты поверочного расчета (Раздел 9.4, «Результаты поверочного расчета»);
- пример поверочного расчета (Раздел 9.5, «Пример поверочного расчета»).

9.2. Знакомство с панелью расчетов

Перед запуском расчета познакомимся с панелью теплогидравлических расчетов (см. Рисунок 8.1, «Знакомство с панелью расчетов»).

	ZuluThermo	_ * ×	
	Система теплоснабжения	Слой	3
1	Наладка Поверка Температу	рный график Конструкторский Сервис Danfoss	
2	 С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета 	 Система теплоснабжения Ф Котельная № 1 ЩТП - 2 ЩТП - 1 ЩТП - 3 Котельная Западная 	4
	P	Раскраска (нет)	5
	Расчет Настройки	Справка Закрыть	

Рисунок 9.1. Знакомство с панелью расчетов

- 1. Вкладка выбора вида расчета
- 2. Выбор параметров расчета
- 3. Кнопка выбора слоя
- 4. Окно выбора источника для расчета
- 5. Выбор встроенных тематических раскрасок для анализа расчета
- 6. Кнопка для открытия окна настроек расчетов
- 7. Кнопка запуска расчета

9.3. Запуск расчета

🖻 Примечание

Прежде чем запускать расчет, внимательно проверьте настройки расчетов (Настройки расчетов)

Для запуска поверочного расчета:

1.

Выполните команду главного меню Задачи|ZuluThermo или нажмите кнопку панели инструментов. Откроется окно теплогидравлических расчетов (см. *рис. "Вкладка"*).

ZuluThermo	_	▲ ×		
	Cnc	й)		
Наладка Поверка Температури	ный график Конструкторский Сервис Danfoss			
 С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета 				
Раскраска (нет)				
Расчет Настройки	Справка Закрыть			

Рисунок 9.2. Вкладка «Поверка» диалога теплогидравлических расчетов

- 2. Откройте вкладку Поверка;
- 3. Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (см. *рис. "Окно выбора слоя"*) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог.

Выберите слой для расчета	? 🔀
Кварталы города N	ОК
Система теплоснабжения	Отмена
	Справка
Показывать имена файлов]

Рисунок 9.3. Окно выбора слоя

4. Отметьте источник, для которых будет производиться расчет, установив флажок рядом с названием источника (Рисунок 8.4, «Выбор источника для расчета»);

ZuluThermo	_ * ×				
Система теплоснабжения Слой)					
Наладка Поверка Температ	урный график Конструкторский Сервис Danfoss				
 С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета 	 ✓ Система теплоснабжения ✓ Котельная № 1 ЩТП - 2 ЩТП - 1 ЩТП - 3 Котельная Западная 				
	Раскраска <нет>				
Расчет Настройки	Справка Закрыть				

Рисунок 9.4. Выбор источника для расчета

- 5. В левой части диалогового окна задайте параметры проводимого расчета, установив требуемые флажки:
 - С учетом утечек проводить ли расчет с учетом нормативных утечек в тепловой сети;
 - С учетом тепловых потерь проводить ли расчет с учетом тепловых потерь. Дополнительно требуется выбрать способ учета: с учетом нормативных тепловых потерь или потерь через изоляцию;
 - Сопла и шайбы из наладки при включении данной опции, в расчете будут участвовать шайбы, подобранные в результате наладочного расчета;
 - Диаметры из конструкторского расчета при включении данной опции, в расчете будут использоваться диаметры, подобранные конструкторским расчетом.
- 6. Нажмите кнопку Расчет.

Если в ходе занесения исходной информации какие-либо данные необходимые для расчета не были внесены или были внесены неверно, то при проведении расчетов в окне сообщений программа выдаст уведомление ошибке Рисунок 8.5, «test» (красным цветом). Программа следит не только за наличием необходимой информации, но и за ее логической верностью, то есть, если Вы впишете диаметр участка более 1.4 м, то программа выдаст ошибку.

Рисунок 9.5. Ошибка при запуске расчета

- 1. Окно Сообщения
- 2. Сообщение об ошибке
- 3. Окно базы данных объекта, у которого обнаружена ошибка
- 4. Поле базы данных с ошибочным значением
- 5. Объект с ошибкой в данных

При отсутствии ошибок в данных или конфигурации сети программа выполнит расчет выбранной сети и заполнит результатами расчета таблицы для каждого типа объекта тепловой сети. Протокол расчета будет отображаться в нижней части экрана в панели Сообщения. В случае ошибок они в протоколе будут выделены красным цветом (более подробно о возможных ошибках *см. "Возможные ошибки расчетов"*).

Глава 10. Конструкторский расчет

10.1. Цель расчета

Целью конструкторского расчета является определение диаметров трубопроводов тупиковой и кольцевой тепловой сети при пропуске по ним расчетных расходов при заданном (или неизвестном) располагаемом напоре на источнике.

Данная задача может быть использована при:

- 1. Проектировании новых тепловых сетей;
- 2. При реконструкции существующих тепловых сетей;
- 3. При выдаче разрешений на подключение новых потребителей к существующей тепловой сети.

В качестве источника теплоснабжения может выступать любой узел системы, например тепловая камера. Для более гибкого решения данной задачи предусмотрена возможность задания для каждого участка тепловой сети либо оптимальной скорости движения воды, либо удельных линейных потерь напора.

В результате расчета определяются диаметры трубопроводов, располагаемый напор в точке подключения, расходы, потери напора и скорости движения воды на участках сети.

Смотрите также:

- 1. Исходные данные конструкторского расчета (« Исходные данные для выполнения конструкторского расчета»);
- 2. Запуск конструкторского расчета (Раздел 10.2, «Запуск расчета»);
- 3. Последовательность выполнения конструкторского расчета (Раздел 10.2, «Запуск расчета»);
- 4. Настройки конструкторского расчета (Глава 7, Настройки расчетов);
- 5. Результаты конструкторского расчета (Раздел 10.3, « Результаты конструкторского расчета»);
- 6. Пример конструкторского расчета (Раздел 10.4, « Пример конструкторского расчета»).

10.2. Знакомство с панелью расчетов

Перед запуском расчета познакомимся с панелью теплогидравлических расчетов (см. Рисунок 8.1, «Знакомство с панелью расчетов»).

Система те	плоснабже	ния				(Слой
Наладка	Поверка	Температ	урный график	Конструкто	рский С	ервис Dar	nfoss
Участок Сталь	подключен в узле, м	ия 2190 • 15	По расхода Оп тепловы t в подающ t в обратни t в обратни	ам ым нагрузкам ем тр-де, С ом тр-де, С	1 150 70		
По ско По цая	ростям	ейным поте	t горяч	ей воды, С	65		_
Минимал	ывный диам	етр, м О.	032	ой воды, с	5		

Рисунок 10.1. Знакомство с панелью расчетов

- 1. Вкладка выбора вида расчета
- 2. Кнопка выбора участка подключения
- 3. Кнопка открытия справочника по трубам
- 4. Кнопка запуска расчета
- 5. Кнопка выбора слоя для расчета
- 6. Панель параметров расчета

10.3. Запуск расчета

🖻 Примечание

Прежде чем запускать расчет, внимательно проверьте настройки расчетов (Глава 7, Настройки расчетов).

Для запуска конструкторского расчета тепловой сети:

1.

Выполните команду главного меню Задачи|ZuluThermo или нажмите кнопку панели инструментов. Откроется диалоговое окно теплогидравлических расчетов (*рис. "Вкладка "*).

ZuluThermo	_ * ×				
	Слой				
Наладка Поверка Температурный график Конструкт	горский Сервис				
Участок подключения -1 © По расходам О По тепловым нагрузкам					
t в подающем тр-де, С	130				
🔲 Напор в узле, м 10 t в обратном тр-де, С	70				
По скоростям t горячей воды, C	60				
💿 По удельным линейным потерям 🛛 t холодной воды, С	5				
Минимальный диаметр, м 0.032					
Расчет Настройки Справка Закр	ыть				

Рисунок 10.2. Вкладка «Конструкторский» диалога теплогидравлических расчетов

- 2. Перейдите на вкладку Конструкторский;
- 3. Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (см. *рис. "Окно выбора слоя"*) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог.

Выберите слой для расчета	? 💌
Кварталы города N	ОК
Система теплоснабжения	Отмена
	Справка
]
Показывать имена файлов	

Рисунок 10.3. Окно выбора слоя

4. Выберите на основе каких данных как будет проводиться расчет установив переключатель По расходам/По тепловым нагрузкам (в правой части диалога) в требуемое положение.

Если расчет проводится на основе известных расчетных расходов, следует установить значение По расходам. В этом случае должны быть заданы расчетные расходы на потребителях.

Если же расчет проводится на основе известных тепловых нагрузок, (значение По тепловым нагрузкам) должны быть заданы нагрузки на потребителях. При расчете по тепловым нагрузкам необходимо ввести расчетные температуры воды в полях ввода под переключателем;

Примечание

(F

Подробнее об исходных данных « Исходные данные для выполнения конструкторского расчета»

- 5. Задайте минимальный диаметр в поле Минимальный диаметр в метрах. Подбираемые в процессе расчета диаметры обязательно будут не меньше указанного значения. Минимальный диаметр трубопровода задается на основании СНиП 41-02-2003 пункт 8.6., в котором говорится, что наименьший внутренний диаметр труб должен приниматься в тепловых сетях не менее 32 мм, а для циркуляционных трубопроводов горячего водоснабжения – не менее 25 мм;
- 6. Выберите сортамент (набор диаметров) из которого будут подбираться диаметры. Для выбора сортамента нажмите кнопку ..., откроется диалог выбора сортамента труб. По-умолчанию существует единственный сортамент Сталь. Подробнее о сортаменте *см. " Справочник по трубам"*;
- 7. При известном располагаемом напоре в узле подключения его можно задать, установив флажок Напор в узле, м и указать значение напора в поле справа от флажка;
- 8. Выберите способ подбора диаметров труб установив переключатель По скоростям/ По удельным линейным потерям в требуемое положение.

В случае выбора варианта По скоростям, диаметры будут подбираться таким образом, чтобы вода двигалась с указанной скоростью. Скорость при этом должна быть указана на каждом участке в поле Оптимальная скорость (конструкторский), м/с;

При выборе варианта По линейным потерям диаметры будут подбираться таким образом, чтобы линейные потери на участках не превышали указанные. Линейные потери при этом должны быть указаны на каждом участке в поле Удельные линейные потери (конструкторский), мм/м.

10.3.1. Последовательность выполнения расчета

1. Нажмите кнопку Выделить 🕨 панели навигации;

2. Выберите участок тепловой сети, для которого будет производиться конструкторский расчет, щелкнув по нему левой кнопкой мыши, при этом выделенный участок замигает. В случае если объект не выделяется следует

производить щелчок мыши удерживая нажатыми клавиши Ctrl+Shift. Расчет будет производиться для всех участков тепловой сети следующих по направлению за выделенным;

3. Нажмите кнопку Участок подключения панели теплогидравлических расчетов. При этом участки тепловой сети, для которых будет произведен конструкторский расчет, окрасятся в красный цвет, включая выбранный участок, а участки, которые не будут рассчитаны – в серый. (см. *рис. "Выделение участка подключения"*).

Рисунок 10.4. Выделение участка подключения

4. Нажмите кнопку Расчет.

Программа выполнит расчет выбранной сети. Результаты расчета будут записаны в базу данных по объектам. В окне сообщений будет выведена информация о необходимом располагаемом напоре в узле подключения.

Минимально необходимый напор в узле подключения ID=18: 10.497 м

Рисунок 10.5. Сообщение об успешном конструкторском расчете

10.4. Пример конструкторского расчета

Проведем конструкторский расчет трубопроводов тепловой сети. Для этого:

1.

Выберите команду главного меню Задачи ZuluThermo или нажмите кнопку панели инструментов. Откроется диалог теплогидравлических расчетов. Выберите вкладку Конструкторский.

ZuluThermo	_ • ×				
	Слой				
Наладка Поверка Температурный график Конструкторский Сервис					
Участок подключения -1 © По расходам © По тепловым нагрузкам					
t в подающем тр-де, С 130					
П Напор в узле, м 10 t в обратном тр-де, С 70					
О По скоростям t горячей воды, С 60					
💿 По удельным линейным потерям 🛛 t холодной воды, С 👘 5					
Минимальный диаметр, м 0.032					
Расчет Настройки Справка Закрыть					

Рисунок 10.6. Вкладка Конструкторский

2. Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (см. *рис. "Диалог выбора слоя"*) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог.

Выберите слой для расчета	? 💌
 Кварталы города N Здания города N Система теплоснабжения 	ОК Отмена
	Справка
Показывать имена файлов	

Рисунок 10.7. Диалог выбора слоя

3. В режиме Выделить выберите участок тепловой сети, для которого будет производиться конструкторский расчет, нажав на него левой кнопкой мыши, при этом выделенный участок замигает. В случае если объект не выделяется (слой не активный), следует повторить выделение удерживая нажатыми клавиши Ctrl +Shift. Расчет будет производиться для всех участков тепловой сети следующих по направлению за выделенным.

4. Нажмите кнопку Участок подключения панели теплогидравлических расчетов.

ZuluThermo	_ * ×
Система теплоснабжения	Слой)
Наладка Поверка Температурный график Конструкт	орский Сервис Danfoss
Участок подключения 2190 О По расходам Опо тепловым нагрузка	IM
t в подающем тр-де, С	150
П Напор в узле, м 15 t в обратном тр-де, С	70
💿 По скоростям t горячей воды, С	65
О удельным линейным потерям t холодной воды, С	5
Минимальный диаметр, м 0.032	
Расчет Настройки Справка Закры	ль

Рисунок 10.8. Выбор участка подключения

При этом участки тепловой сети, для которых будет произведен конструкторский расчет, окрасятся в красный цвет, включая выбранный участок, а участки, которые не будут рассчитаны – в серый.

- Укажите, на основании каких данных будет производиться расчет: на основании известных расчетных расходов, либо на основании известных расчетных тепловых нагрузок. Выберите требуемый переключатель По расходам или По тепловым нагрузкам;
- 6. При расчете по тепловым нагрузкам необходимо ввести расчетные температуры воды в соответствующих полях.

🗿 По тепловым нагрузкам		
t в подающем тр-де, С	110	
t в обратном тр-де, С	70	
t горячей воды, С	60	
t холодной воды, С	5	

- Выберите как будет производиться расчет: по оптимальным скоростям движения воды в трубопроводах или по удельным линейным потерям, выбрав соответствующий переключатель По скоростям или По удельным линейным потерям;
- 8. Задайте, при необходимости, минимальный диаметр в поле Минимальный диаметр, м;
- 9. Нажмите кнопку Расчет. Результаты расчета можно просмотреть, открыв окно семантической информации по рассчитанным участкам трубопроводов в полях Диаметр подающего тр-да (конструкторский), м и Диаметр обратного тр-да (конструкторский), м.

Участки	_ 🗆 .	×
🔠 M 🖪 🕨 M 🔁 🐼 🛶 🖬 🖆 🖆 🖆	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f
Текущая запись Запрос База Ответ		⊧
Норм.эксп.тепл.потери под.тр-да, ккал/час*м2*С		
Норм.эксп.тепл.потери обр.тр-да, ккал/час*м2*С		
Температура в начале участка под.тр-да,°С		
Температура в конце участка под.тр-да,*С		
Температура в начале участка обр.тр-да,°С		
Температура в конце участка обр.тр-да,*С		
Диаметр подающего тр-да (конструкторский), м	0.1	
Диаметр обратного тр-да (конструкторский), м	0.1	
Шероховатость под. тр-да (конструкторский), мм	1	
Шероховатость обр. тр-да (конструкторский), мм	1	
Оптимальная скорость в подающем (конструкторский), м		
Оптимальная скорость в обратном (конструкторский), м/с		
Удельные линейные потери подающего (конструкторски	30	
Удельные линейные потери обратного (конструкторский)	30	=
Сортамент	Сталь	
		Ŧ

Рисунок 10.9. Просмотр результатов конструкторского расчета

Глава 11. Расчет температурного графика

11.1. Цель расчета

Целью расчета является определение минимально необходимой температуры теплоносителя на выходе из источника для обеспечения у выбранного потребителя температуры внутреннего воздуха не ниже расчетной. Температурный график строится для отопительного периода с интервалом в 1 °C.

Предусмотрена возможность задания температуры срезки графика и компенсации недоотпуска тепловой энергии в этот период времени за счет увеличения расхода сетевой воды от источника.

Смотрите также:

- 1. Исходные данные («Исходные данные для построения температурного графика»);
- 2. Запуск расчета температурного графика (Раздел 11.2, «Запуск расчета»);
- 3. Просмотр результатов расчета (Раздел 11.3, «Просмотр результатов расчета»);
- 4. Сохранение результатов расчета температурного графика (Раздел 11.4, «Сохранение результатов расчета температурного графика»).

11.2. Знакомство с панелью расчетов

Перед запуском расчета познакомимся с панелью теплогидравлических расчетов (см. Рисунок 8.1, «Знакомство с панелью расчетов»).

	0
	ZuluThermo _ * *
	Система теплоснабжения
	Наладка Поверка Температурный график Конструкторский Сервис Danfoss
2	Потребитель 3904 Т внутр.воз. 20.00
	Источник 2188 Напор 35.00 Т под. 150.00
	Т наруж.воз30.00
0	Температура срезки 📃 Регулировать напором
0	Температура полки 70 График Сохранить
	6 0
	•••
6	Расчет Настройки Справка Закрыть

Рисунок 11.1. Знакомство с панелью расчетов

1. Вкладка выбора вида расчета

- 2. Кнопка выбора потребителя для расчета
- 3. Панель выбора параметров расчета
- 4. Кнопка выбора слоя
- 5. Кнопка запуска расчета
- 6. Кнопка для построения температурного графика по результатам расчета
- 7. Кнопка для сохранения результатов

11.3. Запуск расчета

Для запуска расчета температурного графика тепловой сети:

1. Выполните команду главного меню Задачи|ZuluThermo или нажмите кнопку апанели инструментов. Откроется окно теплогидравлических расчетов.

ZuluThermo _ • ×
Слой
Наладка Поверка Температурный график Конструкторский Сервис Danfoss
Потребитель 1 Т внутр.воз.
Источник Напор Т под.
Т наруж.воз.
Температура срезки 🔲 Регулировать напором
Температура полки 60 График Сохранить
Расчет Настройки Справка Закрыть

Рисунок 11.2. Вкладка «Температурный график» диалога теплогидравлических расчетов

1. Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (*рис. "Диалог выбора слоя"*) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог.

Выберите слой для расчета	? 🗙
Кварталы города N Здания города N	
	Справка
П показырать имена Жамлов	

Рисунок 11.3. Диалог выбора слоя

- 2. Выберите вкладку Температурный график;
- 3.

Нажмите кнопку Выделить панели навигации и выберите потребителя тепловой сети для которого будет производиться расчет, щелкнув по нему левой кнопкой мыши (слой при этом должен быть активным, либо можно удерживать при щелчке Ctrl+Shift), при этом потребитель будет выделен мигающей рамкой;

4. Нажмите кнопку Потребитель (см. *рис. "Выбор потребителя для расчета"*) панели теплогидравлических расчетов.

ZuluThermo _ • ×
Система теплоснабжения
Наладка Поверка Температурный график Конструкторский Сервис Danfoss
Потребитель 3904 Т внутр.воз. 20.00
Источник 2188 Напор 35.00 Т под. 150.00
Т наруж.воз30.00
Температура срезки 🔲 Регулировать напором
Температура полки 60 График Сохранить
Расчет Настройки Справка Закрыть

Рисунок 11.4. Выбор потребителя для расчета

- 5. Задайте необходимые параметры расчета:
 - Температура срезки— указывается, если на источнике нет возможности обеспечивать расчетную температуру теплоносителя в подающем трубопроводе, например вместо расчетной 150°С максимальная, которую может обеспечить источник 130°С. При отсутствии температуры срезки данное поле не заполняется;

- Регулировать напором при заданной температуре срезки и при установленном флажке Регулировать напором, недостаточная температура воды в подающем трубопроводе, будет компенсироваться увеличением располагаемого напора, для обеспечения расчетной температуры внутреннего воздуха у потребителя;
- Температура полки– указывается минимальная температура теплоносителя в подающем трубопроводе. Для закрытых систем теплоснабжения не менее 70° С, для открытых систем теплоснабжения не менее 60°С.
- 6. Нажмите кнопку Расчет. Для просмотра рассчитанного температурного графика нажмите кнопку График.

11.4. Просмотр результатов расчета

Рассчитанные данные выводятся в поле сообщений в виде ряда значений разделенных между собой запятой (Результаты расчета температурного графика). Семь значений в следующей последовательности:

- 1. Температура наружного воздуха;
- 2. Температура теплоносителя в подающем трубопроводе;
- 3. Температура теплоносителя в обратном трубопроводе;
- 4. Температура воздуха внутри помещения;
- 5. Располагаемый напор на источнике, м;
- 6. Суммарный расход сетевой воды в подающем трубопроводе, т/ч;
- 7. Относительный расход воды на систему отопления.
- 8. Температура на входе в систему отопления.
- 9. Температура на выходе из системы отопления.

```
Сообщения

6.0,65.5,44.6,20.0,35.0,258.7,0.00,46.1,39.1

7.0,63.1,43.4,20.1,35.0,264.3,0.00,44.7,38.2

8.0,60.4,41.6,20.1,35.0,264.3,0.00,43.1,37.1

9.0,60.0,41.4,20.7,35.0,264.3,0.00,43.1,37.3

10.0,60.0,41.6,21.4,35.0,264.3,0.00,43.4,37.7

Расчет окончен!

Время - 00:00:12
```

✓ ► Сообщения Поверка /

Рисунок 11.5. Результаты расчета температурного графика

Для того чтобы рассмотреть температурный график после расчета в виде диаграммы нажмите на панели теплогидравлических расчетов кнопку График. Диаграмму температурного графика можно распечатать, нажав кнопку Печать.

Рисунок 11.6. Температурный график в результате расчета

На температурном графике рис. "Температурный график в результате расчета" отображаются:

- ось абсцисс температура наружного воздуха;
- ось ординат температура теплоносителя;
- температура теплоносителя в подающем трубопроводе линия красного цвета;
- температура теплоносителя в обратном трубопроводе линия синего цвета;
- температура воздуха в помещении линия зеленого цвета.

11.5. Сохранение результатов расчета температурного графика

Для того чтобы сохранить результаты расчета температурного графика :

1. Нажмите правую кнопку мыши на поле сообщений и в появившемся меню выберите пункт Сохранить. (см. *рис. "Сохранение температурного графика"*)

Сообщения			
2.0,64.9,39.6,18.0,50.0,32.9,0.31,64.9,39.4			
3.0, 62.4, 38.6, 18.0, 50.0, 33.7, 0.29, 62.4, 38.4			
4.0,60.0,37.5,18.0,50.0,34.5,0.27,60.0,37.3			
5.0,60.0,38.0,18.8,50.0,34.5,0.27,60.0,37.7			
6.0,60.0,38.4,19.5,50.0,34.5,0.26,60.0,38.2			
7.0,60.0,38.9,20.2,50.0,34.5,0.26,60.0,38.6			
8.0,60.0,39.3,21.0,50.0,34.5,0.25,60.0,39.1 9.0,60.0,39.7,21.7,50.0,34.5,0.25,60.0,39.5	Ð	Копировать	Ctrl+C
10.0,60.0,40.2,22.4,50.0,34.5,0.24,60.0,39.9		Сохранить	Ctrl+S
Расчет окончен!	#	Найти	Ctrl+F
Время - 00:00:27		Очистить	

Рисунок 11.7. Сохранение температурного графика

2. В появившемся диалоговом окне сохранения файла выберите, каталог в котором будет сохранен файл, и задайте имя файла (латинскими буквами). Нажмите кнопку Сохранить. Сохраненный файл сводки с результатами расчетов можно просмотреть в любом текстовом редакторе.

Глава 12. Расчет годовых нормируемых потерь через тепловую изоляцию

12.1. Цель расчета

Целью данного расчета является определение нормативных тепловых потерь через изоляцию трубопроводов в течение года. Тепловые потери определяются суммарно за год с разбивкой по каждому месяцу с учетом работы трубопроводов тепловой сети в различные периоды (летний, зимний). Расчет может быть выполнен с учетом поправочных коэффициентов на нормы тепловых потерь.

Просмотреть результаты расчета можно как суммарно по всей тепловой сети, так и по каждому отдельно взятому источнику тепловой энергии и каждому центральному тепловому пункту (ЦТП), а также по различным владельцам (балансодержателям) участков тепловой сети.

Смотрите также:

- 1. Исходные данные («Исходные данные для расчета нормативных потерь тепла за год»);
- 2. Запуск расчета (Раздел 12.2, «Запуск расчета»);
- 3. Экспорт результатов в EXCEL (Раздел 12.3, «Экспорт в EXCEL»).

12.2. Знакомство с панелью расчетов

Перед запуском расчета познакомимся с панелью теплогидравлических расчетов (см. Рисунок 8.1, «Знакомство с панелью расчетов»).

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

⊟ Тепло ⊟ Ко	вая тел	сеть ьная N	² 1		-Графі Тнв	ик -30.0) (6	Тсо 95.0		реднегодовы Тнв -5.5	ые 🕢 Тгрунт	0.0	Расчет	потерь	Сохранить
↓ Ц III - 1 Ц TП - 1 (ГВС) Ц TП - 2 Ц TП - 2 (ГВС)					Тпод Тобр	Тлод 150.0 Тев 20.0 Тлод 62.0 Тлод 10.0 Тобр 70.0 Тобр 49.0					 Суммарные по подсети По данному узлу 				
					📝 Поп	равочн	ый коэ	ффициент н	а нормы т	епловых поте	ерь		Владель	цы:	
			2		🔽 Русс	ские за	головк	и в отчете					(Все вл	адельцы)	6
Месяц	П	Про	Тнв	Тгр	Тпод	Тобр	Тхв	Qпод Гкал	Qобр Гка	и Gyr_под т	Qут_под	Gyт_обр т	Qут_обр	Gут_пот т	Qут_пот .
Январь	0	744	-11.0	1.0	104.5	54.9	5.0	389.0	166.7	229.4	19.2	234.1	11.8	198.7	11.6
	Л	0	-11.0	1.0	60.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Февраль	0	672	-30.0	0.0	150.0	70.0	0.0	445.4	190.9	201.8	23.8	210.0	13.8	179.4	12.8
	Л	0	-30.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Март	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Апрель	0	720	0.0	0.0	77.0	45.0	0.0	327.9	140.5	224.8	15.2	227.4	10.2	192.3	9.8
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Май	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Июнь	0	0	0.0	0.0	77.0	45.0	0.0	247.1	105.9	105.0	6.0	105.6	4.8	192.3	9.8
	Л	720	0.0	0.0	60.0	0.0	0.0	71.9	17.0	121.0	7.3	123.1	0.0	0.0	0.0
Июль	0	0	0.0	0.0	77.0	45.0	0.0	255.3	109.4	108.5	6.2	109.1	4.9	198.7	10.1
	Л	744	0.0	0.0	60.0	0.0	0.0	74.3	17.6	125.0	7.5	127.2	0.0	0.0	0.0
Август	0	0	0.0	0.0	77.0	45.0	0.0	255.3	109.4	108.5	6.2	109.1	4.9	198.7	10.1
	Л	744	0.0	0.0	60.0	0.0	0.0	74.3	17.6	125.0	7.5	127.2	0.0	0.0	0.0
Сентябрь	0	720	0.0	0.0	77.0	45.0	0.0	327.9	140.5	224.8	15.2	227.4	10.2	192.3	9.8
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Октябрь	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ноябрь	0	720	0.0	0.0	77.0	45.0	0.0	327.9	140.5	224.8	15.2	227.4	10.2	192.3	9.8
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Декабрь	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Итого:								4151.6	1737.0	2727.7	191.8	2767.5	113.2	2339.2	124.3

Рисунок 12.1. Знакомство с панелью расчетов

- 1. Окно выбора источника или ЦТП для расчета
- 2. Таблица исходных данных для расчета
- 3. Исходные данные о температурном графике источника (цтп) выбранного в пункте 1
- 4. Исходные данные о среднегодовых температурах источника (цтп) выбранного в пункте 1
- 5. Параметры выбора результатов суммарно по всем сетям или от источника до ЦТП
- 6. Выбор отображения результатов по различным владельцам (балансодержателям) участков тепловой сети.
- 7. Таблица результатов расчета

12.3. Запуск расчета

Для запуска расчета годовых потерь по нормативам:

- 1. Выполните команду главного меню Задачи ZuluThermo или нажмите кнопку апанели инструментов;
- В открывшемся окне нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге и нажмите кнопку ОКчтобы подтвердить выбор и закрыть диалог;

3. Перейдите на вкладку Сервис и нажмите кнопку Расчет тепловых потерь. Откроется диалог выбора источников для расчетов (см. *рис. "Выбор источника для расчета"*);

Источники	для расчета тепловых по	терь	-X -
	истема теплоснабжения] Котельная № 1] Котельная Западная		ОК

Рисунок 12.2. Выбор источника для расчета

4. Оставьте флажки на источниках, участвующих в расчете и нажмите кнопку ОК. Откроется диалог расчета тепловых потерь (см. *рис. "Расчет нормативных тепловых потерь за год"*).

В левом верхнем углу диалога располагается древовидный список источников тепловой сети. При выборе конкретного источника, данный источник становится текущим, в других полях диалога отображаются данные по этому источнику и расчет (в случае расчета от конкретного источника) выполняется по этому источнику.

5. Введите исходные данные. Подробнее об исходных данных смотрите в соответствующем разделе Раздел 7.4, «Исходные данные для расчета нормативных потерь тепла за год»

Расчеты годовых нормативных тепловых потерь выполняются по занесенной информации о тепловых сетях системы теплоснабжения. Тепловые потери определяются суммарно за год с разбивкой по месяцам. Для определения месячных и годовых тепловых потерь, нужна следующая информация :

- Среднегодовая температура наружного воздуха (Тнв);
- Среднегодовая температура воды в подающем и обратном трубопроводе (Тпод и Тобр);
- Среднегодовая температура грунта (Тгрунт);
- Среднегодовая температура в подвальных помещениях (Тподв).

Среднегодовые температуры и температуры графика берутся автоматически из базы данных объектов (источника или ЦТП). Среднегодовые температуры и температуры графика для текущего источника отображаются в полях в верхней части диалога расчета нормативных тепловых потерь.

Дополнительно следует занести среднемесячные температуры для выбранного в списке источника, которые задаются в первых колонках таблицы в нижней части диалога расчета тепловых потерь. В строках таблицы месяцы, в колонках - значения.

Строки таблицы разбиты на две: О - отопительный период, Л - неотопительный (летний).

- Продолжительность отопительного и неотопительного (летнего) периода в течение каждого месяца;
- Среднемесячная температура наружного воздуха;
- Среднемесячная температура грунта;
- Среднемесячная температура теплоносителя в подающем трубопроводе;
- Среднемесячная температура теплоносителя обратном трубопроводе;
- Средняя за месяц температура холодной воды.
- 6. После ввода исходных данных Нажмите кнопку Сохранитьчтобы сохранить внесенные изменения;
- 7. Задайте параметры расчета:
 - Если в расчете требуется учитывать поправочный коэффициент на нормативные тепловые потери установите флажок Поправочный коэффициент на нормы тепловых потерь. Данный коэффициент вносится в качестве исходных данных в базу по участкам тепловой сети;
 - В зависимости от того, требуется проводить расчет по системе в целом (от источника до конечных потребителей), или от выбранного источника, установите переключатель Суммарные по подсети/По данному узлу в требуемое положение.

Чтобы провести расчет по системе в целом (от источника до конечных потребителей), установите флажок Суммарные по подсети. В результате этой операции будет выполнен расчет нормированных потерь тепла и воды от источника до потребителя, включая и трубопроводы ГВС при четырехтрубной прокладке. При этом нормированные потери тепла на участках будут определены с учетом поправочных коэффициентов внесенных в базу данных по участкам сети;

В случае если необходимо провести расчет от источника (котельная Южная) до ЦТП, – установите флажок По данному узлу. В результате этой операции будет выполнен расчет нормированных потерь от источника и до ЦТП;

- Для того чтобы в экспортированном в Excel были русские заголовки столбцов отчета, установите флажок Русские заголовки в отчете.
- 8. Нажмите кнопку Расчет потерь. Результаты расчета отобразятся в полях таблицы диалога расчета нормативных тепловых потерь рисвверх. Полученные результаты можно экспортировать в Excel (Раздел 13.3, «Экспорт в EXCEL»).

🖯 Примечание

При наличии после ЦТП четырехтрубной тепловой сети, два трубопровода на систему отопления и вентиляции и два трубопровода, подающий и циркуляционный, на систему горячего водоснабжения и выделении ЦТП

можно определить тепловые потери и утечки по каждой группе трубопроводов отдельно.

12.4. Экспорт в EXCEL

Результаты выполненных расчетов могут экспортироваться в MS Excel для этого:

- 1. Нажмите кнопку Отчетдиалога расчета нормативных тепловых потерь;
- 2. В появившемся окне, (*puc. "Экспорт результатов в Excel"*) нажмите кнопку Обзор... и укажите в открывшемся диалоге выбора файла каталог и название файла для для сохранения книги Excel.

Экспорт да	анных по потерям	23
_	Путь к книге Excel:	
	D:\otchet.xls	Обзор
	ОК	Отмена

Рисунок 12.4. Экспорт результатов в Excel

3. Нажмите кнопку ОК, для выполнения операции.

Глава 13. Возможные ошибки расчетов

После запуска расчета система может выдать ряд ошибок, ошибки бывают нескольких типов:

- ошибки по топологии сети;
- ошибки по семантической информации;
- ошибки по результатам расчета;
- остальные ошибки.

При этом, пока не будут устранены ошибки первых двух типов, расчет не запустится. Для того чтобы определить по какому объекту выдана ошибка, выполните двойной щелчок левой кнопкой мыши по строке с ошибкой, после чего объект, по которому выдана ошибка, замигает. Если ошибка связана с семантикой, то откроется окно семантической информации и курсор встанет на строку, в которой необходимо внести или исправить информацию.

Далее, для исправления ошибки, необходимо (в зависимости от ее типа) либо исправить графическую информацию (отредактировать сеть), либо семантическую (внести или исправить данные в базе).

13.1. Ошибки по топологии сети

1. Ошибка Z001: ID=XX Участок не имеет узла

----- Наладка тепловой сети от источника: ID=1 Предупреждение Z601: ID=5 Участок не имеет увла Предупреждение Z601: ID=7 Участок не имеет увла

Рисунок 13.1. Ошибка Участок не имеет узла

Данная ошибка скорей является не ошибкой, а предупреждением, поэтому она выводится синим цветом и не является причиной остановки расчета.

Такое предупреждение будет выведено при неправильном нанесении сети, когда начальный или конечный узел участка не связан с каким-либо объектом, хотя при этом визуально может казаться, что участок связан с точечным объектом.

Для проверки связности всей сети воспользуйтесь разделом Контроль ошибок при вводе. Для исправления ошибки воспользуйтесь разделом Редактирование объектов сети/Перепривязка участка.

XX - индивидуальный номер объекта (ID или Sys), автоматически присваиваемый при прорисовке сети;

2. Ошибка Z021: ID=XX В данный узел один участок должен входить, другойвыходить ------ Наладка тепловой сети от источника: ID=2188 ------Ошибка ZO21: ID=3965 В данный узел один участок должен входить, другой - выходить

Рисунок 13.2. Ошибка Z021

Данная ошибка выводится при неправильном нанесении сети, в том случае, когда к объекту присоединено недопустимое количество участков.

Например, потребитель – это узловой элемент, который может быть связан только с одним участком. Задвижка, насосная станция, могут быть соединены только с двумя участками, один входящий, другой выходящий из объекта. Четырехтрубная тепловая сеть после ЦТП изображается с использованием вспомогательного участка. Подробнее о правильном изображении объектов тепловой сети см. раздел Элементы тепловой сети;

3. Ошибка Z011: ID=XX Потребитель отключен по обратному

Данная ошибка выводится, когда к потребителю подходит подающий трубопровод, но отсутствует обратный. Для исправления данной ошибки необходимо проверить правильность нанесения схемы сети и проверить правильность установки режимов работы участков;

4. Ошибка Z012: ID=XX Потребитель отключен по подающему

Данная ошибка выводится, когда к потребителю подходит обратный трубопровод, но отсутствует подающий. Для исправления данной ошибки необходимо проверить правильность нанесения схемы сети и проверить правильность установки режимов работы участков;

5. Ошибка Z018: ID=XX Потребитель отключен

Данная ошибка выводится, когда теплоноситель не попадает к потребителю ни по подающему, ни по обратному трубопроводу. Для исправления данной ошибки необходимо проверить правильность нанесения схемы сети и проверить правильность установки режимов работы участков;

6. Ошибка Z019: ID=XX Узел отключен

Данная ошибка выводится, когда к узлу сети теплоноситель не попадает ни по подающему, ни по обратному трубопроводу. Для исправления данной ошибки необходимо проверить правильность нанесения схемы сети и проверить правильность установки режимов работы участков.

13.2. Ошибки по семантической информации

Ошибка Z004: Неверное значение поля.

Чтение данных по участкам... Ощибка ZD004: ID=3964 Неверное значение поля 'Dpod'-'Внутренний диамето подающего трубопровода, м'

Рисунок 13.3. Ошибка неверное значение поля

На рисвверх выведена ошибка, связанная с неверным значением поля Диаметр подающего трубопровода, м., где XX – индивидуальный номер объекта (ID или Sys), автоматически присваиваемый объекту при прорисовке сети.

Данная ошибка выводится при наличии некорректных данных или при отсутствии исходной информации хотя бы в одной строке необходимой для расчетов. Для устранения ошибки необходимо дважды щелкните левой кнопкой мыши по сообщению, после чего откроется окно семантической информации по объекту с неверными или отсутствующими данными, и курсор встанет на поле, где необходимо ввести или исправить информацию. (рисвниз)

	Участок	_0	. ×
	🔡 И 4 Р И 💿 🖬 • 🕒 🖄	1 1 1	
	Текущая запись Запрос База Ответ		
	Номер источника	1	
	Наименование начала участка	TK-3	
	Наименование конца участка	TK-8	
	Длина участка, м		
	Внутренний диаметр подающего трубопровода, м	0.125	
	Внутренний диаметр обратного трубопровода, м	0.125	
4	Сумма коэф. местных сопротивлений под. тр-да	1.6	
ообщения	Местные сопротивления под.тр-да		
COODLENNS	Сумма коэф. местных сопротивлений обр. тр-да	1.6	
тение данных по потресителям	Местные сопротивления обо тр-да		

Рисунок 13.4. Исправление ошибки с неверным значением поля

13.3. Ошибки по результатам расчета

1. Предупреждение Недостаточно напора на источнике Delta=X м. Где Delta необходимый напор.

САМЫЙ НЕБЛАГОПОЛУЧНЫЙ ПОТРЕБИТЕЛЬ: ID=XX.

Контроль напора... Недостаточно напора DeltaH=105.873812 САМЫЙ ПЛОХОЙ ПОТРЕБИТЕЛЬ: ID=53

Рисунок 13.5. Сообщение о самом плохом потребителе

Данное сообщение выводится при нехватке располагаемого напора на потребителе, где *DeltaH* – значение напора которого не хватает, м, а *ID* (*XX*) – индивидуальный номер потребителя для которого нехватка напора максимальна.

Рисунок 13.6. Сообщение о недостаточном напоре

Дважды щелкните левой кнопкой мыши по сообщению о самом плохом потребителе: соответствующий потребитель замигает на экране.

Данная ошибка может вызвана несколькими причинами:

- а. Некорректными данными. Если величина нехватки напора выходит за рамки реальных значений для данной сети, то имеет место ошибка при вводе исходных данных или ошибка при нанесении схемы сети на карту. Следует проверить правильно ли были занесены следующие данные:
 - По источнику тепловой сети:
 - Располагаемый напор проверить значение величины расчетного располагаемого напора на источнике.
 - Параметры трубопроводов:
 - Диаметры трубопроводов проверить правильность занесения диаметров трубопроводов, например, был введен диаметр 0.05 м вместо 0.5 метра;
 - Зарастание трубопроводов проверить значение зарастания трубопроводов, данная величина сильно влияет на гидравлический режим сети, так как уменьшает диаметр трубопровода. Например, если диаметр 0.032 м, а зарастание задано 5 мм, то фактический диаметр трубопровода будет 32 -(5+5) = 22 мм. Если зарастание неизвестно, то данное значение задается равным 0;
 - Сопротивление трубопроводов при наличии сопротивления участков трубопроводов, которые получают в результате замеров, программа не учитывает значения диаметров, шероховатостей, зарастаний и местные сопротивления трубопроводов. Задавать сопротивления следует только при наличии результатов произведенных замеров.

Данные ошибки можно обнаружить с помощью построения пьезометрических графиков, например:

Рисунок 13.7. Обнаружение ошибки с помощью пьезометрического графика

На данном графике видно, что на одном из участков сети имеет место большое падение напора, очень высокие удельные линейные потери в трубопроводе. Причину можно обнаружить, если взглянуть на диаметры трубопроводов – после диаметра 125 мм установлен трубопровод диаметром 50 мм, а после него 100мм – нарушение телескопичности налицо;

- По потребителям тепловой сети:
 - Расчетные нагрузки на потребителях проверить правильно ли были заданы расчетные нагрузки на потребителе. При введенной ошибочно большой нагрузки на потребителе соответственно ей возрастает расход теплоносителя протекающего по трубопроводам сети, как следствие возрастают потери напора;
 - Расчетная схема присоединения проверить соответствует ли заданная схема подключения действительности, то есть например если температура теплоносителя в подающем трубопроводе 110°С и расчетная температура воды на отопление 95°С, то схема подключения должна соответствовать данной температуре, то есть это должна быть схема со смешением (элеваторным или насосным), но ни в коем случае с прямым присоединением. В схемах со смешением часть расчетного расхода отбирается из подающей линии и часть из обратной линии, а в схемах с прямым присоединением весь расчетный расход доставляется по подающему трубопроводу, поэтому при неправильном задании схемы подключения (вместо смешения прямое присоединение) весь расчетный

расход протекающий по подающему трубопроводу повлечет за собой большие потери напора;

 Расчетный располагаемый напор в СО – проверить заданную величину потерь напора в системе отопления, например при элеваторном присоединении СО минимально необходимый напор перед элеватором для преодоления гидравлического сопротивления элеватора и присоединенной к нему системы отопления (без учета гидравлического сопротивления трубопроводов, оборудования, приборов и арматуры до места присоединения элеватора) определяется по формуле:

$\Delta H_{\text{эл.мин}} = 1.4 * \Delta H_{CO} * (1+U)^2$

где U - расчетный коэффициент смешения. При температурном графике 150° C - 70° C. Коэффициент смешения (U) = 2.2 и введенном значении потерь напора в CO 1 м, минимальный напор перед элеватором будет составлять около 15 метров. При потерях напора в CO 3 м, минимальный напор уже 44 метра!

b. Гидравлическим режимом сети.

Если ошибки при вводе исходных данных отсутствуют, но нехватка напора существует и имеет реальное для данной сети значение, то в этой ситуации определение причины нехватки и способ ее устранения осуществляет сам специалист, работающий с данной тепловой сетью.

2. ID=XX 'Наименование потребителя' Опорожнение системы отопления (Н, м)

Данное сообщение выводится при недостаточном напоре в обратном трубопроводе для предотвращения опорожнения системы отопления верхних этажей здания, полный напор в обратном трубопроводе должен быть не менее суммы геодезической отметки, высоты здания плюс 5 метров на заполнение системы. Запас напора на заполнение системы может быть изменён в *настройках расчетов*.

XX – индивидуальный номер потребителя, у которого происходит опорожнение системы отопления, *H*- напор, в метрах которого недостаточно;

3. ID=XX 'Наименование потребителя' Напор в обратном трубопроводе выше геодезической отметки на H, м

Данное сообщение выдается при давлении в обратном трубопроводе выше допустимого по условиям прочности чугунных радиаторов (более 60 м. вод. ст.), где *XX* - индивидуальный номер потребителя и *H* - превышающее геодезическую отметку значение напора в обратном трубопроводе.

Максимальный напор в обратном трубопроводе можно задать самостоятельно в настройках расчетов.;

4. ID=XX 'Наименование потребителя' Не подобрать сопло элеватора. Ставим максимальный

Данное сообщение может появиться при наличии больших нагрузок на отопление

или при неверном выборе схемы подключения, которая не соответствует расчетным

_

параметрам. *XX*- индивидуальный номер потребителя, для которого не подобрать сопло элеватора;

5. ID=XX 'Наименование потребителя' Не подобрать сопло элеватора. Ставим минимальный

Данное сообщение может появиться при наличии очень малых нагрузок на отопление или при неверном выборе схемы подключения, которая не соответствует расчетным параметрам. *XX*- индивидуальный номер потребителя, для которого не подобрать сопло элеватора.

13.4. Остальные ошибки

1. Ошибка Z044: Не выбран ни один источник для расчета.

```
Анализ топологии...
Ошибка ZO44: Не выбран ни один источник для расчета
Расчет окончен!
```

Рисунок 13.8. Ошибка, не выбран источник для расчета

Данная ошибка появляется, если в панели гидравлических расчетов ZuluThermo не был отмечен ни один источник. Чтобы отметить источник рассчитываемой сети нужно левой клавишей мыши установить галочку в окне напротив наименования источника. Если в слое несколько источников тепла, не связанных между собой, то можно выделить только нужные:

```
    Пример тепловой сети
    Северная
    ТЭЦ
```

Рисунок 13.9. Выбор источника для расчета

Глава 14. Коммутационные задачи

14.1. Цель расчета

Коммутационные задачи предназначены для анализа изменений вследствие отключения задвижек или участков сети. В результате выполнения коммутационной задачи определяются объекты, попавшие под отключение. При этом производится расчет объемов воды, которые возможно придется сливать из трубопроводов тепловой сети и систем теплопотребления. Результаты расчета отображаются на карте в виде тематической раскраски отключенных участков и потребителей и выводятся в отчет.

Смотрите также:

- запуск расчета (Раздел 14.3, «Запуск расчета»);
- анализ переключений (Раздел 14.4, «Анализ переключений»);
- поиск в слое подложке (Раздел 14.5, «Поиск в слое-подложке»);
- настройки (Раздел 14.6, «Настройки»);
- работа со списком объектов (Раздел 14.7, «Работа со списком объектов»);
- работа с браузером результатов расчета (Раздел 14.8, «Просмотр результатов расчета»).
- экспорт результатов в EXCEL(Раздел 14.8, «Просмотр результатов расчета»).

14.2. Знакомство с окном Коммутационные задачи

Перед запуском расчета познакомимся с окном коммутационных задач (см. Рисунок 8.1, «Знакомство с окном Коммутационные задачи»).

нализ перекл	ючений Поиск в слое под	іложке	
іписок перекл	ючаемых объектов сети	ſ	
Ключ	Тип	Действие	
3967	Задвижка	Изолировать с	л ист
3971	Задвижка	Отключено	-
3969	Задвижка	Отключено	
			E
			×
l Hungsup are a		aport.	

Рисунок 14.1. Знакомство с окном Коммутационные задачи

- 1. Вкладка выбора расчета Анализ переключений или Поиск в слое подложке
- 2. Список переключаемых объектов топловой сети
- 3. Кнопка открытия окна настроек
- 4. Кнопка запуска расчета
- 5. Кнопка выбора слоя
- 6. Выбор действия с объектом (отключение, изолирования от источника)
- 7. Кнопка добавления и кнопка удаления объектов в список переключений.

14.3. Запуск расчета

Для запуска коммутационных задач:

1. Выполните команду главного меню Задачи Коммутационные задачи или нажмите

кнопку на панели инструментов. Появится диалоговое окно Коммутационные задачи, (*рис. "Диалог "*).

Коммутационные задачи									
Пример тепловой сети Слой									
Анализ переключений	Поиск в слое подложн	(e 🕨 🕨							
Список переключаемы	х объектов сети								
Ключ	Тип	Действие 🔒							
		<u>a</u>							
		6							
		\mathbf{X}							
Выполн	ить Настройки	Справка Закрыть							

Рисунок 14.2. Диалог «Коммутационные задачи»

2. Нажмите кнопку Слой... и в появившемся диалоговом окне (*puc. "Диалог выбора слоя"*) с помощью левой кнопки мыши выберите слой тепловой сети. Нажмите кнопку ОК.
| Выберите слой для расчета | ? 🔀 |
|---|---------|
| а Кварталы города N | ОК |
| арания тородата
Система теплоснабжения | Отмена |
| | Справка |
| | |
| | |
| | |
| | |
| | |
| | |
| Показывать имена файлов | ۔
ب |

Рисунок 14.3. Диалог выбора слоя

3. Нажмите кнопку ОК. Далее можно провести анализ переключений (Раздел 14.4, «Анализ переключений») или поиск в слое-подложке (Раздел 14.5, «Поиск в слое-подложке»).

14.3.1. Анализ переключений

При анализе переключений определяется, какие объекты попадают под отключения, и включает в себя:

- Вывод информации по отключенным объектам сети;
- расчет объемов внутренних систем теплопотребления и нагрузок на системы теплопотребления при данных изменениях в сети;
- отображение результатов расчета на карте в виде тематической раскраски;
- вывод табличных данных в отчет, с последующей возможностью их печати, экспорта в формат MS Excel или HTML.

14.3.1.1. Запуск анализа переключений

Для запуска Анализа переключений:

- 1. Запустите Коммутационные задачи (Раздел 14.3, «Запуск расчета»);
- 2. Выберите вкладку Анализ переключений;
- Нажмите кнопку Настройки для вызова диалога настроек программы (Подробнее о настройке Раздел 14.6, «Настройки»);
- 4.

В режиме Выделить выберите на карте запорное устройство (участок), для которого будет производиться отключение (слой при этом должен быть активным, либо удерживайте при выделении объекта клавиши Ctrl+Shift);

5. Нажмите кнопку панели. Выбранный объект добавится в список переключаемых объектов сети в диалоговом окне. (*рис. "Список переключаемых объектов"*).

Коммутационные з	адачи		_ • ×
Система централизо	ованного теплоснабж	ени	Слой
Анализ переключен	ий Поиск в слое по	дложке	Þ
Список переключае	мых объектов сети		
Ключ	Тип	Действие	
69	Задвижка	Выключить	
			_
			8
			\mathbf{X}
Выл	олнить Настрой	ки Справка	Закрыты

Рисунок 14.4. Список переключаемых объектов

После выбора на карте автоматически отобразится в виде раскраски расчетная зона отключенных участков сети. (*рис. "Отображение отключений на карте"*).

Рисунок 14.5. Отображение отключений на карте

Для удаления объекта из списка выделить его в списке и нажать кнопку . При передвижении по списку, на карте автоматически выделяется соответствующий объект;

6. Выберите в поле Действие необходимый вид переключения (*puc. "Работа в окне Коммутационные задачи"*). Этот пункт выполнять при необходимости.

нализ переключе	ний Поиск в слое подложке	
писок переключа	емых объектов сети	
Слюч	Тип	Действие
85	Задвижка	Изолировать от источника 🔨
87	Задвижка	Отключено 😽
89	Задвижка	Отключено

Рисунок 14.6. Работа в окне Коммутационные задачи

Виды переключений:

- Включить Режим объекта устанавливается на «Включен»;
- Выключить Режим объекта устанавливается на «Выключен»;
- Изолировать от источника Режим объекта устанавливается на «Выключен». При этом автоматически добавляется в список и переводится в режим отключения вся изолирующая объект от источника запорная арматура;
- Отключить от источника Режим объекта устанавливается на «Выключен». При этом автоматически добавляется в список и переводится в режим отключения вся отключающая объект от источника запорная арматура.
- 7. Нажмите кнопку Выполнить. В результате выполнения задачи появится броузер Просмотр результата, содержащий табличные данные результатов расчета (*рис.* "Окно результатов расчета"). Подробнее о работе с броузером результатов расчета *см.* " Просмотр результатов расчета". Вкладки браузера содержат таблицы попавших под отключение объектов сети и итоговые значения результатов расчета.

погребитель - одания тепловая Камера По Парактист	
Параметр	Значение
Uбъем воды в подающем тр., куб.м	0.160339
Объем воды в обратном тр., куб.м	0.160339
Расчетная нагрузка на отопление, Гкал/ч	0.916000
Расчетная нагрузка на вентиляцию, Гкал/ч	0.000000
Расчетная средняя нагрузка на ГВС, Гкал/ч	0.190100
Объем воды в системе отопления, куб.м	19.785600
Объем воды в системе вентиляции, куб.м	0.000000
Объем воды в системе ГВС, куб.м	1.140600
Суммарный объем воды, куб. м	21.246878

Рисунок 14.7. Окно результатов расчета

При необходимости можно удалить раскраску с карты с помощью кнопки

14.3.2. Поиск в слое-подложке

Позволяет осуществить поиск в заданном слое (обычно слой зданий) - подложке объектов, местоположение которых совпадает с местоположением потребителей в слое сети. Результаты поиска отображаются на карте в виде тематической раскраски объектов слоя-подложки и выводятся в отчет.

1. Выберите вкладку Поиск в слое подложке.

Коммутационные задачи		_ * ×
Пример тепловой сети		Слой
Анализ переключений Поиск	в слое подложке	F
Учитывать потребителей:		
💿 Всех в сети 💿 Из групп	ы 💿 Из списка	
Ключ	Тип	Режим
		\mathbf{X}
	Выполнить Настр	ойки Справка Закрыть

 \mathbf{X}

- 2. Выберите с помощью переключателей Учитывать потребителей необходимые условия поиска.
 - Всех в сети- поиск будет осуществляться для всех потребителей в слое сети, дополнительных настроек производить не надо, и можно сразу производить поиск;
 - Из группы- поиск будет осуществляться для потребителей, входящих в текущую группу в слое сети;
 - Из списка поиск будет осуществляться для потребителей, которых пользователь

добавит в список. Для этого следует выделить в режиме 📩 на карте потребителя,

для которого необходимо произвести поиск. Нажмать кнопку **на** панели диалога. Выбранный потребитель добавится в список в диалоговом окне. Таким же образом добавьте в список всех необходимых для поиска потребителей (Подробнее о работе со списком *см. "Работа со списком объектов"*).

3. Нажмите кнопку Выполнить.

14.4. Настройки

Для вызова диалога Настройки:

- Запустите Коммутационные задачи (🌃, Раздел 14.3, «Запуск расчета»);
- Нажмите кнопку Настройка (рис. "Настройки коммутационных задач").

Коммутационные	задачи		_ • ×
теплосеть			Слой
Анализ переключе	ний Поиск в слое	подложке	Þ
Список переключа	емых объектов се	ги	
Ключ	Тип	Действие	+
			<u>a</u>
			e
			\mathbf{X}
Вы	полнить Настр	ройки Справка	Закрыты

Рисунок 14.9. Настройки коммутационных задач

Открывшийся диалог настроек имеет следующие вкладки:

Слой сети

В списке Выберите слой сети выберите нужный слой сети и укажите вид сети (Тепловая сеть) в списке Выберите вид сети для правильного расчета итоговых значений, (*puc. "Вкладка*").

стройки				2.5
Слой сети	Анализ переключений	Слой подложка	Раскраска HASP	
Выберите	слой сети:			
Примерт	епловой сети			-
Выберите	вид сети:			
Тепловая	а сеть			
Водопров Пригой т	зодная, сеть			
другой П				
Единицы і	измерения:			
Тапловые	насриани Гкал/ч	•		
1 CIDIOBBIC	на рузки			

Рисунок 14.10. Вкладка «Слой сети» диалога «Настройки»

Анализ переключений

астройки Слой сети Анализ переключений Выберите типы объектов сети, учас Источник Источник Источник Источник Потребитель Исторебитель Истосная станция	Слой подложка Раскраска НАSP ствующие в анализе
Поссе ановной изеа Поссе ановной изеа Доступные поля: Номер источника	Поля для вывода:
Геодезическая отметка, м Напор насоса на подающем трубі Напор насоса на обр. трубопр.де, Напор на входе в насосную в под Напор на входе в насосную в обр Напор на выходе из насосной в п Напор на выходе из насосной в п напор на выходе из насосной в о	Марка насоса на подающем Марка насоса на обратном К К К К К К К К К К К К К
Использовать слой подложку	ЭК Отмена Применить Справка

Рисунок 14.11. Настройка анализа переключений

В списке Выберите типы объектов сети, участвующие в анализе отображается перечень всех типов для выбранного слоя сети. Для того чтобы определенный тип элементов сети вошел в отчет по поиску изменений в сети, необходимо включить его в списке типов и выбрать нужные поля для вывода в отчет.

Для включения типа в отчет с помощью левой кнопки мыши установите флажок рядом с нужным объектом (*puc. "Настройка анализа переключений"*).

При выделении названия объекта в верхней части окна, в списке Доступные поля отобразится список всех полей базы данных выбранного объекта, которые могут быть включены в отчет. В списке Поля для вывода отобразится список полей, которые были выбраны для включения в отчет.

Для включения нужных полей в отчет следует выделить необходимые поля в левом списке, и нажать кнопку . Выбранные поля перейдут в правый список. Для того чтобы добавить сразу все поля нужно нажать кнопку . И наоборот, с помощью кнопок < и < поля удаляются из правого списка.

Слой подложка

Слой сети Анализ переключений С	лой подложка	Packpacka HASP	
Слой подложка Кварталы Здания Надпи Слой сети			A III
Доступные поля:	По	ля для вывода:	
Символ дома Адрес Код улицы Код ЖЭУ Количество этажей Коды узлов подключения потр.	× Kytkro	зартал лица омер дома орпус орнадлежность бслуживающая организаці	ия
 Выводить отчет Раздельный отчет по режимам 			

Рисунок 14.12. Настройка слоя-подложки

Слой-подложка – это слой, в котором будет осуществляться поиск и раскраска объектов, попадающих под потребителей сети. (Обычно слой зданий).

Для выбора слоя подложки следует установить флажок рядом с требуемым слоем в верхнем списке вкладки.

Объекты выбранного слоя подложки будут раскрашены в зависимости от состояния потребителя изображенного на этом объекте, например, здания будут окрашены под выключенными потребителями (см. *рис. "Отображение отключений на тематической раскраске"*).

Рисунок 14.13. Отображение отключений на тематической раскраске

Для того чтобы получить информацию о зданиях, попавших под отключение следует установить флажок Выводить отчет.

Для того чтобы получить информацию по объектам из слоя подложки следует выделить курсором название слоя подложки, в списке Доступные поля вкладки отобразяться поля, которые могут быть добавлены в отчет. В списке Поля для вывода отобразится список полей, которые были выбраны для включения в отчет.

Для включения нужных полей в отчет выделите поля в списке Доступные поля и нажмите кнопку . Выбранные поля перейдут в список Поля для вывода. Для того чтобы добавить сразу все поля нажмите кнопку . И наоборот, вы можете с помощью кнопок и удалять поля из правого списка.

При установленном флажке Раздельный отчет по режимам в броузере Просмотр результата результаты поиска группируются в отдельные таблицы, в зависимости от режимов потребителей.

Раскраска

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

łастройки					23
Слой сети	Анализ переключений	Слой подложка	Раскраска	HASP	
Раскраск	а слоя подложки по сост	оянию потребите	лей сети		
📝 Включ	ен 👿 Выключен	📝 Не опред	елен		
📝 Раскра	аска отключенных/изоли	рованых ччастков	зсети		
		ОК Отм	іена Пр	именить	Справка

Рисунок 14.14. Настройка раскраски слоя подложки

В верхней части диалога под строкой Раскраска слоя подложки по состоянию потребителей сети задаются стили и цвета заливки площадных объектов слоя подложки в зависимости от режима соответствующих потребителей. Заданный стиль для состояния используется только при установке соответствующего флажка. Для задания стиля и цвета заливки нужного режима нажмите кнопку под названием состояния. В открывшемся диалоге (см. *рис. "Настройка раскраски площадных объектов"*) выберите нужные параметры.

Стиль за	аливки 😰 🖾
Цвет: Узор:	Образец:
	ОК Отмена Справка

Рисунок 14.15. Настройка раскраски площадных объектов

Режим Не определен соответствует ситуации, когда на один объект слоя подложки попадает несколько потребителей с разными режимами.

При установке флажка Раскраска отключенных/изолированных участков сети также задается задать стиль и цвет участков сети отключенных/изолированных от источников. Для задания нужного стиля и цвета нажмите кнопку под флажком. В появившемся диалоге выберите нужные параметры.

Цвет: Образеи Стиль:	
Стиль:	
Тодицина:	
Толщина. З 🔽	

Рисунок 14.16. Раскраска отключенных/изолированных участков сети

14.5. Работа со списком объектов

В список объектов вы можете добавлять необходимые объекты из активного слоя карты. Для этого надо:

1. В режиме Выделить выберите на карте запорное устройство (участок), для которого будет производиться отключение (слой при этом должен быть активным, в противном случае требуется удерживать при выделении объекта Ctrl+Shift);

2. Нажмите кнопку 🕈 . Объект добавится в список.

Для удаления объекта из списка:

- 1. Выберите его в списке;
- 2. Нажать кнопку –

При передвижении по списку, на карте автоматически выделяется соответствующий объект. Если объект не попадает в видимую область карты, то вид устанавливается таким образом, чтобы объект оказался в центре карты.

При выбранной вкладке Анализ переключений, с помощью кнопок и вы можете просмотреть и распечатать отчет по списку объектов. Поля для подготовки отчета берутся из настроек соответствующего типа объекта сети (Подробнее о настройке анализа переключений Раздел 14.3.1, «Анализ переключений»).

💮 Zulu 7.0 - [Пример тепловой сети]	the second s
i 🛃 🖻 🖓 🗐 🔐 100% 🗸 3a	кр <u>ы</u> ть
	Задвижка Ключ Тип объекта 187 Задвижка Задвижка
	Ключ Тип объекта
	185 Задвижка
	189 Задвижка

Рисунок 14.17. Отчет по списку отключаемых объектов

14.6. Просмотр результатов расчета

После запуска анализа переключений на экране сразу появляется окно с результатами расчета, показанное на *рис. "Окно результатов расчета"*. Вкладки окна содержат таблицы попавших под отключение объектов сети (если указано в настройках) и итоговые значения результатов расчета.

Параметр Значение Объем воды в подающем тр., куб.м 0.160339 Объем воды в обратном тр., куб.м 0.160339 Расчетная нагрузка на отопление, Гкал/ч 0.916000 Расчетная нагрузка на отопление, Гкал/ч 0.000000 Расчетная средняя нагрузка на БВС, Гкал/ч 0.190100 Объем воды в системе отопления, куб.м 19.785600 Объем воды в системе вентиляции, куб.м 0.000000 Объем воды в системе ГВС, куб.м 1.140600 Суммарный объем воды, куб. м 21.245878	Попреситель адалия гелловая калера Попреситель ито	
Объем воды в подающем тр., куб.м 0.160339 Объем воды в обратном тр., куб.м 0.160339 Расчетная нагрузка на отопление, Гкал/ч 0.916000 Расчетная нагрузка на вентиляцию, Гкал/ч 0.000000 Расчетная средняя нагрузка на БВС, Гкал/ч 0.190100 Объем воды в системе отопления, куб.м 19.785600 Объем воды в системе вентиляции, куб.м 0.000000 Объем воды в системе БВС, куб.м 1.140600 Суммарный объем воды, куб. м 21.245878	Параметр Значение	
Объем воды в обратном тр., куб.м 0.160339 Расчетная нагрузка на отопление, Гкал/ч 0.916000 Расчетная нагрузка на вентиляцию, Гкал/ч 0.000000 Расчетная средняя нагрузка на ГВС, Гкал/ч 0.190100 Объем воды в системе отопления, куб.м 19.785600 Объем воды в системе вентиляции, куб.м 0.000000 Объем воды в системе вентиляции, куб.м 0.000000 Объем воды в системе ГВС, куб.м 1.140600 Суммарный объем воды, куб. м 21.246878	Объем воды в подающем тр., куб.м 0.160339	
Расчетная нагрузка на отопление, Гкал/ч 0.916000 Расчетная нагрузка на вентиляцию, Гкал/ч 0.000000 Расчетная средняя нагрузка на ГВС, Гкал/ч 0.190100 Объем воды в системе отопления, куб.м 19.785600 Объем воды в системе вентиляции, куб.м 0.000000 Объем воды в системе ГВС, куб.м 1.140600 Суммарный объем воды, куб. м 21.246878	Объем воды в обратном тр., куб.м 0.160339	
Расчетная нагрузка на вентиляцию, Гкал/ч 0.000000 Расчетная средняя нагрузка на ГВС, Гкал/ч 0.190100 Объем воды в системе отопления, куб.м 19.785600 Объем воды в системе вентиляции, куб.м 0.000000 Объем воды в системе ГВС, куб.м 1.140600 Суммарный объем воды, куб. м 21.246878	Расчетная нагрузка на отопление, Гкал/ч 0.916000	
Расчетная средняя нагрузка на ГВС, Гкал/ч 0.190100 Объем воды в системе отопления, куб.м 19.785600 Объем воды в системе вентиляции, куб.м 0.000000 Объем воды в системе ГВС, куб.м 1.140600 Суммарный объем воды, куб. м 21.246878	Расчетная нагрузка на вентиляцию, Гкал/ч 0.000000	
Объем воды в системе отопления, куб.м 19.785600 Объем воды в системе вентиляции, куб.м 0.000000 Объем воды в системе ГВС, куб.м 1.140600 Суммарный объем воды, куб. м 21.246878	Расчетная средняя нагрузка на ГВС, Гкал/ч 0.190100	
Объем воды в системе вентиляции, куб.м	Объем воды в системе отопления, куб.м 19.785600	
Объем воды в системе ГВС, куб.м 1.140600 Суммарный объем воды, куб. м 21.246878	Объем воды в системе вентиляции, куб.м 0.000000	
Суммарный объем воды, куб. м 21.246878	Объем воды в системе ГВС, куб.м 1.140600	
	Суммарный объем воды, куб. м 21.246878	
	Суммарный объем воды, куб. м 21.246878	

Рисунок 14.18. Окно результатов расчета

14.6.1. Навигация

Окно Просмотр результата содержит табличные данные результатов расчета, а также таблицы попавших под отключения объектов. Для того, чтобы сделать активной

нужную таблицу щелчком левой кнопкой мыши выберите соответствующую вкладку, например, Потребитель, как показано на *рис. "Поиск выключенного объекта на карте"*

Выключен			1.90.101	1.90401	число жителей	KB
Denone-terr	ул. Ломоносова 47 🔥	т/ц ж.ч.	0.249	0.0687		
Выключен	ул. Ломоносова 45 ,	дт∕ц ж.ч.	0.249	0.0647		10
Выключен	ул.Ломоносова 48	т/ц ж.ч.	0.418	0.0567		10

Рисунок 14.19. Поиск выключенного объекта на карте

При выделении записи в таблице, на карте автоматически выделяется соответствующий объект. Если объект не попадает в видимую область карты, то вид устанавливается таким образом, чтобы объект оказался в центре карты.

14.6.2. Печать отчета

Для создания отчета по табличным данным результатов расчета :

- 1. Перейдите на нужную вкладку. (Потребитель, Итоговые значенияи т.д.);
- 2. Нажмите кнопку . Появится диалог создания отчета. (см. *рис. "Диалог создания отчета"*).

Рисунок 14.20. Диалог создания отчета

3. Для предварительного просмотра отчета нажмите кнопку Просмотр. Для печати отчета нажмите кнопку Печать.

14.6.3. Экспорт в MS Excel

Для экспорта в электронную таблицу MS Excel табличных данных результатов расчета:

1. Нажмите кнопку . Появится диалог экспорта в MS Excel. (см. *рис. "Диалог* экспорта в Excel").

Экспорт в Е	xcel
×	Шаблоны отчетов: (Стандартный) 🔹
	Новый Изменить Удалить
Путык кни D:\oth	re Excel: cet.xls O63op
Имя листа 1	
[Сохранить 🐧 Просмотр Отмена

Рисунок 14.21. Диалог экспорта в Excel

- 2. В строке Путь к книге Excel нажмите кнопку Обзор и укажите путь и имя сохраняемого файла. В поле Имя листавведите имя листа, в который будут сохранены данные;
- 3. Для предварительного просмотра отчета нажмите кнопку Просмотр;
- 4. Нажмите кнопку Сохранить.

14.6.4. Экспорт в HTML

Для экспорта в HTML страницу табличных данных результатов расчета:

1. Нажмите кнопку . Появится диалог экспорта в HTML. (см. рис. "Диалог экспорта в Html").

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Экспорт в Н	TML 🔀
0	Шаблоны отчетов: (Стандартный)
	Новый Изменить Удалить
Имя файла C:\hous	: ses Обзор
	Сохранить 🛕 Просмотр Отмена

Рисунок 14.22. Диалог экспорта в Html

- 2. В строке Имя файла нажмите кнопку Обзори укажите путь и имя создаваемого HTML-файла;
- 3. Для предварительного просмотра отчета нажмите кнопку Просмотр;
- 4. Нажмите кнопку Сохранить.

Глава 15. Пьезометрический график

Одним из основных инструментов анализа результатов расчетов для тепловых сетей является пьезометрический график. Этот график изображает линии изменения давления в узлах сети по выбранному маршруту, например, от источника до одного из потребителей.

Пьезометрический график строится по указанному пути. Путь указывается автоматически, достаточно определить его начальный и конечный узлы. Если путей от одного узла до другого может быть несколько, то по умолчанию путь выбирается самый короткий, в том случае если нужен другой путь, то надо указать промежуточные узлы.

15.1. Знакомство с окном пьезографика

Перед запуском расчета познакомимся с окном пьезографика (см. Рисунок 8.1, «Знакомство с окном пьезографика»).

Рисунок 15.1. Знакомство с окном пьезографика

- 1. Панель инструментов пьезометрического графика
- 2. Область графика
- 3. Обозначение объекта тепловой сети на графике
- 4. Ячейка с наименованием объекта указанным выше на графике
- 5. Область табличных данных связанных с объектами

Условные обозначения по-умолчанию

- линия давления в подающем трубопроводе красным цветом;
- линия давления в обратном трубопроводе синим цветом;
- линия поверхности земли пунктиром;
- линия статического напора голубым пунктиром;
- линия давления вскипания оранжевым цветом.

15.2. Построение пьезометрического графика

Для того чтобы построить пьезометрический график:

. Нажмите на панели навигации кнопку Поиск пути 🌾;

- 2. Подведите курсор мыши к начальному объекту (например, к насосу) и нажмите левую кнопку мыши, после чего на выбранном объекте будет установлен красный флажок (см. *рис. "Построение пьезометрического графика"* а);
- 3. Щелчком левой кнопкой мыши поставьте флажок на конечном объекте (например, проблемном потребителе). При существовании нескольких маршрутов до конечного узла (в кольцевых сетях) установите флажки на промежуточных узлах сети (см. *рис. "Построение пьезометрического графика"* b). Также можно указать участки, по которым не будет проходить маршрут. Для этого, удерживая клавишу Ctrl, щелкните левой кнопкой мыши по тем участкам, по которым не будет проходить маршрут, они отметятся красным крестиком;
- 4. Подведите курсор к конечному узлу и установите флажок двойным нажатием левой кнопки мыши, в результате на конечном узле будет установлен флажок, а выбранный маршрут для построения графика высветится красным цветом (см. *рис. "Построение пьезометрического графика"* с);

Рисунок 15.2. Построение пьезометрического графика

5.

Нажмите кнопку Пьезометрический график Эдля построения графика и открытия окна пьезометрического графика (см. рис. "Окно пьезометрического графика").

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Рисунок 15.3. Окно пьезометрического графика

На пьезометрическом графике отображаются:

- линия давления в подающем трубопроводе красным цветом;
- линия давления в обратном трубопроводе синим цветом;
- линия поверхности земли пунктиром;
- линия статического напора голубым пунктиром;
- линия давления вскипания оранжевым цветом.

Рисунок 15.4. Пример пьезометрического графика

15.2.1. Панель инструментов пьезометрического графика

✓ - кнопка обновления или добавления графика. Для выбора нажмите и в открывшемся меню выберите требуемый пункт:

- Обновитьдля перестроения графика после изменения пути или после изменения параметров;
- Добавитьдля добавления нового графика к существующему, при этом первый график будет отображаться затененным цветом.
- се- кнопка разворота пьезометрического графика. Меняются местами начало и конец пути графика;
- 75% - изменение размера графика. Для выбора размера нажать и выбрать желаемый размер в процентах от исходного;
- 🚄 кнопка выбора принтера и запуска печати пьезометрического графика;
- кнопка предварительного просмотра страницы распечатываемого пьезометрического графика;
- кнопка редактирования макета страницы, изменение ориентации листа, изменения размера полей страницы;
- 🛛 🔟 кнопка изменения или создания шаблона графика;
- Пример 3 окно выбора шаблона пьезометрического графика, для выбора нажмите •и в открывшемся меню выберите требуемый шаблон, по умолчанию используется стандартный;
- кнопка сохранения нового шаблона пьезометрического графика;
- кнопка удаления шаблона пьезометрического графика. Маршрут строится автоматически, достаточно указать его начальный и конечный узлы. Если путей от одного узла до другого может быть несколько, то достаточно указать ряд промежуточных узлов.

15.3. Сохранение пьезометрического графика

Для того чтобы определенный пьезометрический график всегда можно было открыть и просмотреть, график можно сохранить в файл.

Для сохранения графика:

- 1. После построения пьезометрического графика выберите в диалоговом окне График меню Файл/Сохранить (для сохранения копии графика Файл/Сохранить как);
- 2. В появившемся диалоговом окне укажите путь и в строке Имя файлазадать имя для сохраняемого графика;
- 3. Нажмите кнопку Сохранить.

Для открытия ранее сохраненного графика:

- 1. В диалоговом окне График выберите пункт меню Файл|Открыть;
- 2. В появившемся окне укажите файл для открытия и нажмите кнопку Открыть.

К сохраняемому графику можно добавить комментарий или примечание, для этого:

- 1. В диалоговом окне График выберите пункт меню Файл Варианты;
- 2. В появившемся окне Варианты графика нажмите кнопку Добавить, после чего появится окно, в котором будет предложено внести комментарий к графику;
- 3. Введите комментарии, нажмите кнопку ОК;
- 4. Нажмите кнопку Закрытьдля окончания ввода комментариев.

После добавления комментариев пьезографик обязательно надо сохранить.

Варианты графика	X
Имеющиеся варианты:	Добавить
График от 03.11.2010 11:02:45 График от Котельной до Бани	Удалить
	Заметки
	Закрыть
	.#

Рисунок 15.5. Варианты графика

15.4. Сохранение пьезометрического графика в Ms Word и Excel

Для сохранения пьезометрического графика в Microsoft WordTM или ExcelTM:

1. Чтобы скопировать весь пьезографик, в любом месте пьезометрического графика нажмите правую клавишу мыши, после чего в открывшемся контекстном меню

выберите пункт Выделить все (см. *рис. "Выделение всего пьезометрического графика"*). В результате весь график выделится рамкой.

Рисунок 15.6. Выделение всего пьезометрического графика

Если нужно копировать только шкальную часть пьезометрического графика то для этого выделите область таблицы графика, которую необходимо перенести, нажав на левую клавишу мыши и удерживая ее растяните область копирования до необходимых размеров, (см. *рис. "Выделение графика под таблицей"*).

Рисунок 15.7. Выделение графика под таблицей

- При копировании всего пьезографика нажмите правую кнопку мыши в любом месте графика, а при копировании только шкальной части щелкните правой кнопкой в выделенной области и в появившемся контекстном меню выберите пункт Копировать;
- 3. Для того чтобы вставить скопированный график откройте программу, например Word или Excel, установите курсор в необходимое место документа, нажмите правую кнопку мыши и в открывшемся контекстном меню выберите пункт Вставить.

15.5. Экспорт пьезометрического графика

Система позволяет экспортировать пьезометрический график в форматы BMP (*.bmp) и Enhanced Metafile (*.emf).

Для экспорта пьезометрического графика:

- 1. В окне График выберите пункт меню Файл|Экспорт...;
- 2. В появившемся диалоговом окне в строке Имя файлазадайте имя и путь для нового файла;
- 3. В строке Тип файлавыберите тип файла, который нужно получить в результате экспорта;
- 4. Нажмите кнопку Сохранить;
- 5. При экспорте в формат bmp можно дополнительно изменить параметры экспортируемого файла:

При экспорте в формат emf можно изменить только размеры документа;

6. Нажмите кнопку ОК.

15.6. Совмещение пьезометрических графиков

Пьезометрические графики можно совмещать (накладывать друг на друга), для этого:

- 1. Постройте первый пьезографик (Раздел 15.1, «Построение пьезометрического графика») или откройте ранее сохраненный график (см. раздел Раздел 15.2, «Сохранение пьезометрического графика»);
- 2. Отметьте новый путь для построения второго графика или используйте оставшийся;
- 3. В окне График нажать на ▼ кнопки и в открывшемся меню выбрать пункт Добавить. После чего новый график будет наложен на предыдущий. При этом первый график будет прорисован более тусклым цветом, а второй график более ярким. (см. *рис. "Совмещение пьезометрических графиков"*).

Рисунок 15.8. Совмещение пьезометрических графиков

15.7. Быстрая настройка пьезометрического графика

Наиболее часто используемые настройки пьезометрического графика можно задать с помощью контекстного меню, открывающегося щелчком правой кнопки мыши в области окна График.

Быстрая настройка графика с помощью контекстного меню позволяет:

- 1. Выделить пьезографик или табличную часть;
- 2. Изменить внешний вид пьезографика;
- 3. Настроить масштаб пьезографика;
- 4. Настроить кривые пьезографика и ячейки таблицы;
- 5. Изменить свойства пьезографика.

Рисунок 15.9. Быстрые настройки графика

Выделение пьезографика

Выделить всю область пьезографика можно с помощью пункта Выделить все контекстного меню. Выделение может понадобиться для дальнейшего копирования и вставки пьезографика в какую либо программу, например в Microsoft WordTM или Microsoft ExcelTM (см. раздел Раздел 15.3, «Сохранение пьезометрического графика в Ms Word и Excel»).

Изменение внешнего вида пьезографика

При выборе пункта Вид контекстного меню откроется дополнительное меню со следующими опциями:

- Затенять при наложении при совмещении нескольких пьезометрических графиков можно выбрать будет ли построенный ранее график затеняться или нет (см. раздел Совмещение пьезометрических графиков);
- 2. Таблица- с помощью данной опции можно включать и выключать отображение табличной (или шкальной) области графика;
- 3. Скрывать ячейки- с помощью данной опции можно скрыть частично видимые ячейки таблицы (в случае их наложения друг на друга).

Изменение масштаба пьезографика

При выборе пункта Масштаб контекстного меню откроется дополнительное окно настройки масштаба графика, в котором можно определить масштаб для осей X и Y:

- 1. без масштаба (равномерные отсчеты);
- 2. подбирать масштаб автоматически;
- 3. соблюдать определенный масштаб (в окошке справа необходимо указать этот масштаб).

Помимо настройки осей имеется возможность включения или отключения отображения нулевой геодезической отметки на графике. Для ее отключения надо снять флажок Всегда включать ноль в диапазон шкалы, для включения нуля наоборот установить флажок.

Настройка кривых пьезографика

При выборе опции Кривые откроется дополнительное окно со списком всех кривых графика:

Кривые	23
💿 🔷 Геодезическая отметка	*
🖻 🔷 Напор в обратном трубопроводе	
🖻 🔷 Напор в подающем трубопроводе	
🖻 🔷 Высота зданий	
🖻 🔷 Потери на шайбе на подающем трубопроводе	=
😰 🔷 Потери на шайбе на обратном трубопроводе	
😰 🔷 Линия вскипания	
😰 🔷 Линия статического напора	
💿 🚍 Наименование узла	
💿 \Xi Геодезическая высота, м	
💿 🚍 Напор в обратном трубопроводе, м	
💿 🚍 Располагаемый напор, м	
💿 🚍 Длина участка, м	-
	•

Рисунок 15.10. Список кривых пьезометрического графика

Для того чтобы скрыть или отобразить ранее скрытую кривую надо сделать щелчок левой кнопкой мыши слева от названия кривой на значке «глаза».

Двойной щелчок левой кнопкой мыши на названии кривой откроет диалоговое окно по настройке кривой (Раздел 15.7, «Создание нового шаблона пьезометрического графика»).

Изменений свойства пьезографика

Свойства пьезографика можно изменить, выбрав пункт контекстного меню Свойства.

15.8. Создание нового шаблона пьезометрического графика

По умолчанию пьезографик строится по стандартному шаблону, со стандартными настройками, но в системе имеется возможность создать новый шаблон с необходимыми параметрами.

Для создания нового шаблона:

(стандартная)

1. Установите курсор в окне выбора шаблона графика и задать новое имя шаблона

. Нажмите кнопку для сохранения нового шаблона;

2. Нажмите кнопку редактора шаблона и выберите слой редактируемого пьезометрического графика (см. *рис. "Окно выбора слоя"*).

Выбери	ите источник данных		23
	Выберите слой, структура и использованы при построен	данные которого будут ии графика.	
	Пример тепловой сети	(Обзор
		ОК	Отмена

Рисунок 15.11. Окно выбора слоя

3. После выбора слоя нажмите ОК.

🖉 Примечание

По умолчанию указывается тот слой, который является активным в загруженной карте.

После нажатия ОК появится следующее окно:

График - Новый	
График - Пьезометрическ 🔺	График
— Фонисетка 👘	
— Ось Х	Название графика:
— Ось Ү	
Кривые	Пьезометрический график
🏥 🔷 Геодезическая отметка	
🎰 🔷 Напор в обратном трубс	Вид:
🌐 🛧 Напор в подающем труб 😑	масштаб по Х:
🎰 🔷 Высота зданий	💿 без масштаба (равномерные отсчеты)
🌐 🔷 Потери на шайбе на под	🔘 родбирать автоматически
🌐 🔷 Потери на шайбе на обр	
🌐 🔷 Линия вскипания	🔘 соблюдать масштаб I:
🗄 🔷 Линия статического наг	масилтаб по Y:
Таблица	
🚊 🚍 Наименование узла 👘	подбирать автоматически
🛓 🚍 Геодезическая высота,	🔘 соблюдать масштаб 1:
🔄 🚍 Напор в обратном трубс	
🚊 🚍 Располагаемый напор,	Длины участков
📺 🚍 Длина участка, м	💿 брать с карты
🖭 🚍 Диаметр участка, м	🔿 брать из поля
🗄 🚍 Потери напора в подаю 🕈	
	ОК Отмена Применить

Рисунок 15.12. Конструктор пьезометрического графика

В левой части диалогового окна располагается дерево настроек, которое состоит из трех разделов:

- 1. График;
- 2. Кривые;
- 3. Таблица.

15.8.1. Раздел График

Установив курсор на заголовок График можно настроить масштабирование графика: масштабировать вручную, автоматически по оси X и Y или вообще не придерживаться масштаба, а использовать равномерные отсчеты. При масштабировании графика выбирается способ определения длины участка - по масштабу с карты или по значению, записанному в поле базы данных по участкам сети. Ниже показан пример графика использующего автоматический подбор масштаба по оси X и Y.

Рисунок 15.13. Пример автоматического масштаба графика

При желании задать масштаб графика вручную необходимо установить маркер напротив строки Соблюдать масштаб и в поле справа ввести с клавиатуры требуемый масштаб, после чего нажать кнопку Применить.

Установив курсор на подзаголовок Фон и сетка, можно задать параметры отображения фона и сетки графика.

График - Новый		X
График - Пьезометрическ ▲ Фон и сетка Ось Х Ось У Кривые А Геодезическая отметка А Напор в обратном трубс А Напор в подающем трубс А Напор в подающем трубс А Потери на шайбе на пор А Потери на шайбе на обр А Пиния статического наг Таблица В Напире обратном трубс В Располагаемый напор, В Дилина труастка, м В Пинар изастка, м В Пилери напора в подаю! С Пинариатка, м	Фон и сетка Фон: швет фона: швет рамки: Сетка: По оси X: Основные линии промежуточные линии швет линий: (авто) •	по оси Y: ✓ основные линии ✓ промежуточные линии
	OK	Отмена Применить

Рисунок 15.14. Настройка фона и сетки

Установив курсор мыши на подзаголовок Ось X или Ось Y можно изменить параметры отображения осей X и Y, такие как: стиль линии отображающей ось, количество и внешний вид делений оси, внешний вид заголовка шкалы.

График - Новый	X
График - Новый График - Пьезометрическ ▲ Фон и сетка Ось × Ось × Себу Кривые № ~ Геодезическая отметка № ~ Напор в подающем трубс № ~ Напор в подающем трубс	Ось Y Вид Отображать линию оси на графике Стиль линии цвет: (авто) толщина на экране: 1 пкс
 № Выста зданий № Потери на шайбе на пор № Потери на шайбе на обр № Линия скилания № Линия статического наг Таблица Е Наименование узла Е Наименование узла Е Наименование узла Е Наименование узла Е Адина участка, м Е Диаматр участка, м Е Потери напора в подаю * 	Толщина при печати: 0,1 мм 🔄 Шкалы В Название Напор, м (основная) Цалить Свойства
	ОК Отмена Применить

Рисунок 15.15. Настройка оси У

15.8.1.1. Шкала

Для оси Y можно провести дополнительные настройки шкалы. Для этого следует в окне Ось Y в правой нижней части окна сделать двойной щелчок левой кнопкой мыши по шкале Напор, м (основная). Откроется окно настроек шкалы.

Шкала №1: Напор, м (основная)
Вид Интервал Шрифт подписей Шрифт заголовка
Вид Деления:
Стиль линий цвет: (авто) 💌 толщина на экране: 1 пкс 💭 толщина при печати: 0 1 мм
Заголовок шкалы
👽 отображать заголовок 🥅 поверх графика
ОК Отмена Применить

Рисунок 15.16. Настройка шкалы пьезографика

Окно настроек шкалы имеет следующие вкладки:

- Вид- в этой вкладке настраивается внешний вид шкалы (цвет линии, толщина, деления шкалы), а также задается заголовок шкалы;
- Интервал позволяет настроить интервал значений (максимальное, минимальное значение, цена промежуточных делений), а также выбрать размерность шкалы.

Интервал значений по оси X нельзя изменить при выбранном режиме без масштаба (равномерные отсчеты).При выборе подзаголовка Интервал для оси Y в разделе Дополнительно можно включить\отключить функцию Всегда отображать ноль в диапазоне шкалы. При убранном флажке ноль отображаться не будет, при этом минимальное значение шкалы Y будет подобрано автоматически. Данная функция удобна при больших значениях геодезических отметок;

- Шрифт подписей- в этой вкладке настраивается внешний вид подписей шкалы (шрифт, начертание, размер, цвет);
- Шрифт заголовка- в этой вкладке настраивается внешний вид заголовка шкалы (шрифт, начертание, размер, цвет).

15.8.2. Раздел Кривые

При установке курсора на заголовок Кривые можно выбрать состав отображаемых кривых на пьезометрическом графике. При желании скрыть какую либо кривую необходимо убрать флажок слева от наименования требуемой кривой.

Рисунок 15.17. Настройка кривых пьезометрического графика

При установке курсора на подзаголовок с наименованием кривой, например Напор в подающем трубопроводе, можно отредактировать вид, название кривой и выбрать шкалу к которой привязана данная кривая.

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГТ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

График - Новый	<u> </u>
График - Пьезометрическ ▲ Фон и сетка Ось Х Ось Х Ось У Кривые С Геодезическая отметка С Напор в обратном трубс С Анапор в обратном трубс С Анапор в обратном трубс С Анапор в обратном трубс С Алиния вскилания С Линия скалического наг Таблица В Е Наименование узла В Е Пеодезическая высота, В Е Анаметр участка, м В Е Длина участка, м В Потери напора в подаю. С	Напор в подающем трубопроводе Название: Напор в подающем трубопроводе Вид: Вид: Вид: Видимая вспомогательная Привязка: шкала по Х: (основная) шкала по Y: Напор, м (основная)
	ОК Отмена Применить

Рисунок 15.18. Настройка кривой

При установке курсора на подзаголовок Объекты можно выбрать объекты тепловой сети, для которых будут отображаться точки кривой.

График - Пьезометрическ 🔺	Объекты - Напор в подающем трубопрово,	де
Фон и сетка Ось Х Ось У Кривые а ∼ Геодезическая отметка	Объект: (все синеольные) Дросселирующий узел (ID=7) Задеижка (ID=5) Источник (ID=1) Насосная станция (ID=4)	 Добавить Удалить Изменить
 → Напор в обратном трубс → Напор в подающем труб Объекты - Стиль ⊕ Надписи ⊕ Ависта зданий ⊕ Оптери на шайбе на под ⊕ Потери на шайбе на обр ⊕ Линия вскипания 	на графике: Формулы для: <u>точек кривой</u> F Поле ▼ У= field("H_pod")	•
 Пиния статического наг Таблица Таблица Таблица Геодезическая высота, 	х, х	• •

Рисунок 15.19. Подраздел «Объекты»

При установке курсора на подзаголовок Стиль имеется возможность определить внешний вид выбранной кривой. Можно настроить цвет, толщину кривой, а также отображение узлов кривой.

	-	
рафик - Пьезометрическ 🔺	Стиль - Напор в	подающем трубопроводе
— Фонисетка	_	
— Ось Х	Вариант:	Линии:
Ось Ү		цвет: 🗾 🚽 стиль: 💷 🚽
Сривые	•	
🗄 🔷 Геодезическая отметка	Линии	толщина на экране: 3 пкс 🚔
🕂 🔷 Напор в обратном трубс		
📄 🔷 Напор в подающем труб 👘		толщина при печати: 0.8 мм 🚖
- Объекты		🗖 отображать изды
Стиль		
⊕ Надписи		форма: 👝 🖕 размер: 3 мм 🗦
🗄 🔷 Высота зданий		
🗄 🔷 Потери на шайбе на под		Штриховка
🗄 🔷 Потери на шайбе на обр		
• ~ Линия вскипания		
🗄 🔷 Линия статического наг		цвет2: (авто)
аблица	4	()
— ≡ Наименование узла		тип: нет 🗸
🗄 🚍 I еодезическая высота,		
🗄 🚍 Напор в обратном трубс		
🕀 🚍 Располагаемый напор, 🍸		1
•		
		ОК Отмена Применить

Рисунок 15.20. Подраздел «Стиль кривой»

15.8.2.1. Отображение узлов

Для отображения узлов на пьезографике необходимо установить флажок Отображать узлы. Можно указать форму узла (выбрать в выпадающем окошке форма), и в окошке размер задать размеры выбранного символа.

График - Новый *		X
График - Пьезометрическ 🔺	Стиль - Напор в	подающем трубопроводе
— Фонисетка		
— Ось Х	вариант:	Линии:
- Ось Ү		цвет: 🗾 🚽 стиль: 🚽
Кривые		
🗄 🔨 Геодезическая отметка	Линии	толщина на экране: З пкс 🔶
🖶 🔷 Напор в обратном трубс 📒		
📄 🔷 Напор в подающем труб 👕		толщина при печати: 0.8 мм 🚍
Объекты		🔽 отображать узды
Стиль		
i⊞∘ Надписи		форма: 👝 🖕 размер: 2.5 мм 🚔
🗈 🔨 Высота зданий		
🕀 🔨 Потери на шайбе на под		Штриховка
🕀 🔨 Потери на шайбе на обр		
🕀 🔨 Линия вскипания		
Элиния статического наг		цвет2: (авто) 💌
Таблица	4 III >	
Наименование узла		тип: нет 🔻
Перекана высота,		
Hanop в обратном трубс		
🕀 = Располагаемый напор, 🔻		1
4		
		ОК Отмена Применить

Рисунок 15.21. Включение отображения узлов на кривой

15.8.2.2. Штриховка

В разделе Штриховка можно указать область и внешний вид штриховки, для этого выбрать тип штриховки:

• нет;

- до оси Х;
- до другой кривой;
- на заданную ширину.

При выборе типа на заданную ширину ниже необходимо указать в миллиметрах ширину штриховки, а при выборе типа до другой кривой необходимо указать кривую, до которой будет осуществляться штриховка. В окошке цвет можно выбрать - цвет штриховки, в окошке стиль - стиль отображения штриховки.

График - Новый	-	X
График - Новый График - Пьезометрическ Фон и сетка Ось Х Ось Х Сось У Кривые Фон Капор в обратном трубс Фон Напор в обратном трубс Фон Напор в обратном трубс Побъекты Фон Исетка Фон и сетка Фон и сетка Стиль Надписи	Стиль - Напор в Вариант: С инии Линии	лодающем трубопроводе Линии: цвет: стиль: толщина на экране: 3 пкс - толщина при печати: 0.8 мм - Готображать узлы Форма: размер: 2.5 мм -
 Высота зданий Потери на шайбе на под Потери на шайбе на обр Линия вскипания Линия статического наг Таблица Наименование узла Е Геодезическая высота, Е Наименование трубс Е Располагаемый напор, 	< <u> </u>	Штриховка цвет: Стиль: С///// ч цвет2: (авто) ч тип: до другой кривой ч кривая: Напор в обратном трубопроводе ч
		ОК Отмена Применить

Рисунок 15.22. Настройка штриховки

Ниже на рисунке можно увидеть результат штриховки от кривой Напор в подающем трубопроводе до кривой Напор в обратном трубопроводе. А также штриховка от кривой Геодезическая отметка до кривой Х.

Файл 🝷 🛃 🕶 🗘 100	1% 🔹 🖪 🚨 🗟	🛛 🔟 (стан	дартная)		uf di			
Hanop, w	70 60 50 40 20 10							
Наименование узла	Северная	TK-2	TK-3	Шайба-1	TK-4	TK-7	т/ц ж.ч.	
Геодезическая высота, м	11	11	11	15	19	9	15	
Напор в обратном трубопроводе, м	27	32.171	32.752	32.755	32.758	33.449	34.674	
Располагаемый напор, м	45.1	38.649	37.44	37.431	37.427	36.038	33.58	
	220	76.63	33.43	12.96	69.05	75.43		
длина участка, м	0.2	0.2	0.175	0.175	0.07	0.05		
длина участка, м Диаметр участка, м								
длина участка, м Диаметр участка, м Потери напора в подающе трубопроводе, м	и 1.28	0.628	0.004	0.002	0.698	1.231		

Рисунок 15.23. Пример графика со штриховкой

15.8.2.3. Надписи на пьезометрическом графике

При установке курсора на подзаголовок Надписи можно включить и настроить отображение надписей на пьезометрическом графике. В строке вариант выбирается тип надписи:

- нет надписей;
- простые бирки;
- бирки с тенью.

В строке цвет фона и цвет рамки выбирается цвет фона и рамки надписи. В окне наклон выбирается ориентация надписи относительно точки на графике, т.е. указывается на сколько градусов необходимо повернуть надпись. Значение вводится либо с клавиатуры либо задается с помощью левой кнопки мыши путем перемещения красной точки на шкале. Опция Округлять значения позволяет округлять выводимые значения до указанных знаков после запятой.

График - Новый	X
График - Пьезометрическ 🔺	Надписи - Напор в подающем трубопроводе
— Фонисетка — Ось Х — Ось У	вариант: бирки с тенью 💌
Кривые → Геодезическая отметка → Напор в обратном трубс → Напор в подающем трубс → Объекты → Стиль ➡ Надписи ➡ ~ Высота зданий ➡ ~ Потери на шайбе на под ➡ ~ Потери на шайбе на под ➡ ~ Потери на шайбе на обр	цвет фона:
 Алиния статического наг Таблица = Наименование узла = Геодезическая высота, = Еподезическая высота, = Напор в обратном трубс = Располагаемый напор, 	Округлять значения до 2 ▲ эн. ОК Отмена Применить

Рисунок 15.24. Настройка подписей кривой

На рисунке, приведенном ниже можно увидеть результат включения режима отображения надписей на графике. На график были вынесены значения напора в подающем трубопроводе в узловых точках сети.

Рисунок 15.25. Пример графика с надписями

Установив курсор на подзаголовок Шрифт можно настроить параметры шрифта выводимых на график надписей.

График - Пьезометрическ 🔺	Шрифт - Надписи - Напор в	в подающем трубопроводе	
Фон и сетка Ось Х Ось Х Ось У Кривые ~ Геодезическая отметка ~ Напор в обратном трубс Объекты Стиль Надписи Шифт ~ Высота зданий ~ Потери на шайбе на под ~ Потери на шайбе на обс ~ Линия вскипания ~ Линия вскипания ~ Потери на шайбе на обс ~ Линия вскипания ~ Потери вскипания ~ Потери в скратном трубс ~ Линия статического наг Таблица ~ Е Наименование узла ~ Е напор в обратном трубс ~ И	Шрифт: Arial Arial Black Arial Rvarow Arial Rvarow Arial Rvarowded MT Bold Arial Unicode MS Baskerville Old Face Атрибуты подчеркнутый зачеркнутый цвет	Начертание: Полужирный Курсив Обычный Полужирный Курсив Набор: Кириллический • Образец АаВьСс АаБбЯя	Размер 8 9 10 11 12 14

Рисунок 15.26. Настройка шрифта надписей

15.8.3. Раздел таблица

При установке курсора на заголовок Таблица можно настроить отображаемые значения в табличной части пьезометрического графика. При желании скрыть какое-либо значение необходимо убрать галочку слева от наименования требуемого значения.

График - Новый		X
График - Пьезометрическ 🔺	Таблица	
— Фон и сетка		
- Ось Х	Показывать: 🔘 Кривые 🧿 Строки таблицы	Добавить
Е Ось Ү	🔊 Название	
Кривые		9далить
🗄 🔷 Геодезическая отметка	Наименование узла	Cooversa
• Напор в обратном трубс	✓ = Геодезическая высота, м	своиства
🕀 🔨 Напор в подающем труб 📰	Напор в обратном трубопроводе, м	Usersen
🕀 🔨 Высота зданий	Располагаемый напор, м	паверх
🗄 🔨 Потери на шайбе на под	💟 🚍 Длина участка, м	Вниз
🔠 🔨 Потери на шайбе на обр	💟 🚍 Диаметр участка, м	
🖽 🔨 Линия вскипания	🗹 🚍 Потери напора в подающем трубопровод	
H · · · · Линия статического наг	📝 🚍 Потери напора в обратном трубопроводе	
Тарлица	📝 🚍 Скорость движения воды в под.тр-де, м/с	
наименование узла	📝 🚍 Скорость движения воды в обр.тр-де, м/с	
	📝 🚍 Удельные линейные потери в ПС, мм/м	
напор в ооратном труос Папор в ооратном труос	📝 🚍 Удельные линейные потери в ОС, мм/м	
	📝 🚍 Расход в подающем трубопроводе, т/ч	
	📝 🚍 Расход в обратном трубопроводе, т/ч	
	ОК Отмена	Применить

Рисунок 15.27. Настройка табличных данных графика

При установке курсора на подзаголовок с наименованием кривой, например Наименование узла, можно отредактировать вид (видимая или невидимая) и название значений в табличной части графика.

рафик - Пьезометрическ 🔺	Наименование узла
Фони сетка	
- Ось Х	Название:
Ось Ү	
Сривые	паименование узла
🗄 🔨 Геодезическая отметка	Pue:
🗄 🔷 Напор в обратном трубс	вид.
🗄 🔷 Напор в подающем труб 😑	📝 видимая
🗄 🔷 Высота зданий	
🗄 🔨 Потери на шайбе на под	
🗈 🔷 Потери на шайбе на обр	Привязка:
🗈 🔷 Линия вскипания	
🗠 🔷 Линия статического наг	шкала по Х:
аблица	
🛛 🚍 Наименование узда 🛛 🖳	
🛛 🚍 Геодезическая высута,	
🗉 🚍 Напор в обратном трубс	
🛛 🚍 Располагаемый напор,	
🖙 🚍 Длина участка, м	
🛛 🚍 Диаметр участка, м	
🔄 🚍 Потери напора в подаю 🍸	
4 111	

Рисунок 15.28. Настройка Таблицы. Вкладка «Общие»

При установке курсора на подзаголовок Объекты можно выбрать объекты сети, для которых будут отображаться значения полей баз данных в шкальной части графика.

График - Новый *	ع ع
График - Пьезометрическ ▲ Фон и сетка Ось Х Ось Х Кривые № Сеодезическая отметка № Анапор в обратном трубс № Анапор в подающем трубс № Анапор в подающем трубс № Анапор в изайбе на пор № Сотери на шайбе на пор	Объекты - Наименование узла Объект: [все синвольные] Добавить Удалить Изменить на графике: формулы для: точек кривой • В Поле •
 Пиния вскипания Линия статического наг Таблица Наименование узла Объекты Стиль Шрифт Е Геодезическая высота, ≡ Напор в обратном трубс ≡ Располагаемый напор, 	$\begin{array}{c c} Y \\ npocroir \\ orover \\ \hline \\ Y_1 \\ Y_2 \\ g Boithold \\ orover \\ \hline \end{array} \qquad \qquad$
< Þ	ОК Отмена Применить

Рисунок 15.29. Настройка Таблицы. Вкладка «Объекты».

Установив курсор на подзаголовок Стиль можно настроить ориентацию значений в ячейках, количество знаков после запятой для значений, выводимых в таблицу значений. А также задать цвет фона для строки, содержащей определенные значения.

График - Новый *	X
График - Пьезометрическ 🔺	Стиль - Наименование узла
— Фонисетка	
ОсьХ	Формат текста:
Ссь Ү	название шкалы: наклон: + .
Кривые 	
🎍 🔷 Напор в обратном трубс _	текст ячеек:
🎰 🔷 Потери на шайбе на под	цвет фона: Прозрачный 🔽 0 🚔 градусов
🏥 🛧 Потери на шайбе на обр	
🗄 🔷 Линия вскипания	
🗄 🗠 🔷 Линия статического наг	окрупля в значения до
Таблица	
📄 🚍 Наименование узла	
- Объекты	
Стиль	
шрияду	
напор в обратном трубс	
напор, на напор, на напор, на напор, на напор, на	
	ОК Отмена Применить

Рисунок 15.30. Настройка Таблицы. Вкладка «Стиль»

На рисунке, приведенном ниже можно увидеть результат настройки стиля ячеек для всех значений и цвета фона для строки Располагаемый напор.

Рисунок 15.31. Пример настройки табличных данных

Установив курсор на подзаголовок Шрифт можно настроить параметры шрифта выводимых в таблицу значений. Данные параметры можно изменять для всех значений таблицы.

трафик - пьезометрическ 🔺	Шрифт - Наименование узл	18	
Фон и сетка Ось Х Ось Х Ось У Кривые	Шрифт: Arial Arial Black Arial Narrow Arial Rounded MT Bold Arial Unicode MS Baskerville Old Face Атрибуты подчеркнутый зачеркнутый цвет	Начертание: Обычный Курсие Осычный Полужирный Курсив Набор: Кириллический • Образец АаВЬСс АаБбЯя	Размер 8 9 10 11 12 14

Рисунок 15.32. Настройка таблицы. Вкладка Шрифт

После редактирования шаблона пьезометрического графика нажать ОК для выхода из редактора шаблона и нажать 📝 для сохранения изменений.
Глава 16. Исходные данные для выполнения инженерных расчетов

16.1. Основные исходные данные для выполнения наладочного и поверочного расчетов

Прежде чем приступить к любому инженерному расчету, необходимо занести исходные данные. В зависимости от вида проводимого расчета, потребуется занести дополнительные данные к уже введенным, например, для расчета с учетом тепловых потерь или для конструкторского расчета.

Рекомендации по занесению исходных данных:

- Рекомендуется сначала внести исходные данные для узловых объектов сети, таких как источник, тепловые камеры, потребители и т. д., а затем уже по участкам трубопроводов тепловой сети;
- Для всех объектов сети, кроме участков трубопроводов, рекомендуется заполнить поле *Name*, *Наименование* объекта (узла), так как информация из данного поля дает наглядность при построении пьезометрических графиков и их распечатке;
- Наименования начал и концов участков трубопроводов сети можно записать автоматически, при наличии наименований объектов сети, подробнее Раздел 16.2, «Автоматическое занесение начала и конца участков»;
- При изображении сети на карте (в масштабе) можно считать длину участков с карты, подробнее Раздел 16.1, «Автоматическое занесение длины с карты»;
- Прежде чем приступить к расчету с учетом тепловых потерь и утечек, рекомендуется провести расчет без их учета.

Примечание

Для всех объектов тепловой сети (кроме участков) необходимо задать значение H_geo , \Gammaeogesuveckas отметка, м. Если геоgesuveckue отметки неизвестны, то можно принять местность плоской, задав на всех объектах геоgesuveckyю отметку равную нулю. Геоgesuveckas отметка также может быть считана со слоя рельефа, подробнее об этом Раздел 16.3, «Автоматическое занесение геоgesuveckux отметок объектов сети со слоя рельефа»и подраздел «Отметки высот с карты» раздела «Автоматическое занесение исходных данных» руководства Zulu.

Для наладочного и поверочного расчета без учета тепловых потерь следует занести данные по следующим элементам сети:

- источник;
- потребитель:

- система отопления;
- система горячего водоснабжения.
- ЦТП:
 - система отопления;
 - система горячего водоснабжения.
- обобщенный потребитель;
- участок тепловой сети;
- насосная станция;
- дросселирующие устройства:
 - вычисляемая дроссельная шайба;
 - устанавливаемая дроссельная шайба;
 - регулятор располагаемого напора;
 - регулятор давления;
 - регулятор расхода.

Чтобы провести расчеты с учетом тепловых потерь к вышеперечисленным потребуется занести дополнительные данные:

- по нормированным потерям;
- с учетом фактической изоляции.

Примечание

При занесении исходных данных по объектам также можно воспользоваться сводными таблицами, *см.* "*Таблицы баз данных элементов тепловой сети*"

16.2. Занесение данных по элементам сети

16.2.1. Источник

Для выполнения наладочного расчета надо занести следующую информацию по источнику тепловой сети:

1. Nist, Номер источника – Задается цифрой, например 1, 2, 3и т.д., по количеству котельных на предприятии. После выполнения расчетов присвоенный номер источника будет прописан у всех объектов, которые будут запитаны от данного источника;

- 2. *H_geo, Геодезическая отметка, м-*Задается отметка оси (верха) трубы, выходящей из данного источника. Она может автоматически быть считана со слоя рельефа (см. раздел <u>Автоматическое занесение исходных данных</u>|Отметки высот с карты.);
 - 3. *T1_r*, *Pacчетная температура в подающем трубопроводе*, °*C* задается расчетное значение температуры сетевой воды в подающем трубопроводе, на которое было выполнено проектирование системы централизованного теплоснабжения, например 150, 130, 110, 105 или 95°C. Максимальное значение 250°C;
 - 4. *Thz_r*, *Pасчетная температура холодной воды*, °*C* − Задается расчетная температура холодной водопроводной воды, например 5, 8 °C. Максимальное значение 20°C. Минимальное значение 1°C;
 - 5. *Tnv_r*, *Pacчетная температура наружного воздуха*, °*C* Задается расчетное значение температуры наружного воздуха, (например –25, –30, –50 и т.д. °C), которое принимается в соответствии со СНиП. Минимальное значение –60°C;
 - 6. *H_ras*, *Расчетный располагаемый напор на выходе из источника*, *м* – Задается расчетный располагаемый напор на выходе из источника (разность между давлением в подающем и давлением в обратном трубопроводах), например 30, 40, 70, 100 м. При выполнении наладки расчетный располагаемый напор на выходе из источника можно задать заведомо очень маленьким 5-10 м, в этом случае располагаемый напор на источнике будет подобран автоматически. Максимальное значение 250 м. Минимальное значение 1м;
 - 7. *H_obr*, *Расчетный напор в обратном трубопроводе на источнике*, *м* - задается расчетное значение напора в обратном трубопроводе на источнике, например 20, 50, 100 и т.д. метров. Расчетный напор в обратном трубопроводе задается с учетом геодезической отметки расположения источника, например геодезическая отметка 50 метров, напор в обратном трубопроводе 20 метров, тогда расчетный напор в обратном трубопроводе на источнике равен 50 + 20 = 70 метров. Минимальное значение 0м;
 - 8. Mode, Режим работы источника если в сети несколько источников, то указывается режим работы источника, для этого следует выбрать соответствующую строку, нажать кнопку чи в открывшемся меню выбрать необходимое наименование режима работы.

Рисунок 16.1. Режимы работы источника

Режимы работы источника

Выделенный источник	Источник будет определяющим при работе на сеть. В этом случае данный источник будет характеризоваться расчетным располагаемым напором, расчетным напором в обратном трубопроводе и максимальной подпиткой сети, которую он может обеспечить.
Подпитки нет, фиксирован располагаемый напор	Источник не имеет своей подпитки, располагаемый напор на этом источнике поддерживается постоянным, а напор в обратном трубопроводе зависит от режима работы сети и определяющего источника.
Подпитки нет, фиксировано давление в обратнике	Источник не имеет своей подпитки, но поддерживает напор в обратном трубопроводе на заданном уровне, при этом располагаемый напор меняется в зависимости от режима работы сети и определяющего источника.
Подпитка неограничена	Источник, с заданным расчетным располагаемым напором и расчетным напором в обратном трубопроводе, имеющий неограниченную подпитку.
Подпитка ограничена заданным значением	Источник, имеющий фиксированную подпитку с заданным расчетным располагаемым напором. Напор в обратном трубопроводе на источнике будет зависеть от величины этой подпитки, режима работы системы и соседних

источников, включенных в сеть. В поле Максимальный расход на подпитку, следует указать фиксированную величину подпитки

9. Glimit, Максимальный расход на подпитку, т/ч-Используется только в том случае, когда режим работы источника «Подпитка ограничена заданным значением». Задается максимальный расход воды на подпитку, например 20, 40т/ч.

Для выполнения поверочного расчета нужно дополнительно занести следующую информацию:

- 1. *T1_t*, *Текущая температура воды в подающем тру-де*, °*C*-Задается текущая температура воды в подающем трубопроводе (на выходе из источника), например 70°C при текущей температуре воздуха 4 °C и т.д. Данное значение должно обязательно задаваться при выполнении поверочного расчета;
- 2. *Tnv_t*, *Текущая температура наружного* воздуха, °С Задается текущая температура наружного воздуха, например +8, -5, -10, -20и т.д. °С. Данное значение должно обязательно задаваться при выполнении поверочного расчета.

Для расчета аварийной ситуации, когда подключенная нагрузка меньше установленной следует занести:

1. *Qmax*, Установленная тепловая мощность, Гкал – данное поле используется для расчета аварийной ситуации, когда подключенная нагрузка больше установленной на источнике. При достижении предельного значения подключенной нагрузки в процессе расчета, будет соответственно снижена текущая температура на выходе из источника. В остальных расчетах следует оставлять пустым, тогда установленная тепловая мощность будет равняться подключенной нагрузке. Подробнее об этом <u>см. раздел.</u>

Сводная таблица данных по источнику приведена в разделе Таблицы баз данных элементов тепловых сетей Источник.

16.2.2. Потребитель

К тепловой сети подключаются, как правило, четыре вида тепловой нагрузки:

- отопление;
- горячее водоснабжение;
- вентиляция;
- технологическая нагрузка.

Потребитель может иметь одну или несколько тепловых нагрузок присоединенных к тепловой сети по различным схемам. Схема присоединения тепловой нагрузки зависит от следующих факторов:

- способа центрального регулирования;
- качества сетевой воды;

- соотношения нагрузки отопления и горячего водоснабжения;
- расчетных температур теплоносителя в тепловой сети и системе отопления и т.д.

При выполнении инженерных расчетов системы централизованного теплоснабжения необходимо также учитывать степень автоматизации схем подключения тепловых нагрузок. Подключаемые нагрузки потребителя могут быть:

- Не автоматизированы, т.е. не установлено никакого регулирующего оборудования;
- Частично автоматизированы, установлен, например, регулятор температуры на горячее водоснабжение, или регулятор расхода на систему отопления;
- Полностью автоматизированы, установлены регуляторы на все виды подключенной нагрузки.

Возможные устройства для регулирования. На систему отопления:

- Регулятор расхода поддерживает заданный (расчетный) расход сетевой воды на систему отопления;
- Регулятор нагрузки поддерживает расчетное количество тепловой энергии на систему отопления или необходимую температуру теплоносителя на входе в эту систему путем изменения расхода сетевой воды в зависимости от изменения температуры наружного воздуха.

На горячее водоснабжение:

• Регулятор температуры – поддерживающий заданную температуру теплоносителя на ГВС, например, 60°С.

На систему вентиляции:

• Регулирующий клапан, изменяющий расход сетевой воды на калориферную установку, например, в зависимости от температуры воздуха внутри здания.

В случае отсутствия регуляторов необходима установка дросселирующих устройств, ограничивающих расход сетевой воды на каждый вид подключенной нагрузки. Возможные места установки этих устройств показаны на схемах подключения потребителей к тепловой сети.

16.2.2.1. Информация по потребителю, необходимая для выполнения расчетов

- Высота здания потребителя, м-задается высота здания, если точной высоты здания не известно, можно принимать условно 3 метра на этаж;
- Номер схемы подключения потребителя-выбирается схема присоединения узла ввода;
- Расчетная темп. сет. воды на входе в потреб., °С-задается расчетное значение температуры сетевой воды, на которое было выполнено проектирование

систем отопления и вентиляции данного потребителя, например 150, 130, 105 или 95 °C.

16.2.2.1.1. Данные по системе отопления потребителей

При наличии системы отопления независимо от выбранной схемы необходимо указать:

- Расчетная нагрузка на отопление, Гкал/ч-задается расчетная нагрузка на систему отопления. При отсутствии проектных данных расчетные тепловые нагрузки на отопление могут быть определены по наружному объему здания или поверхности нагрева теплопотребляющего оборудования. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите настройки расчетов;
- Коэффициент изменения нагрузки отопления-задается пользователем в случае необходимости увеличения нагрузки на отопление по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное значение нагрузки на отопление будет увеличено соответственно на 10 или 20%;
- Расчетная темп. воды на входе в СО, °С- задается расчетное значение температуры теплоносителя на входе в систему отопления, на которое было выполнено проектирование, обычно 95 °С;
- Расчетная темп. воды на выходе из СО, °С-задается расчетное значение температуры теплоносителя на выходе из системы отопления, на которое было выполнено проектирование, обычно 70 °С;
- Расчетная темп. внутреннего воздуха для СО, °С- задается расчетное значение температуры воздуха внутри отапливаемых помещений при проектировании системы отопления, например 20, 18, 16 или 10 °С;
- Наличие регулятора на отопление- выбирается из списка наличие регулирующего устройства на систему отопления;
- Максимальное давление в обратном тр-де на СО, м-Задается максимально допустимое давление в обратном трубопроводе на СО для конкретного потребителя. Если поле не задано то по умолчанию используется значение из Настройки расчетов.

16.2.2.1.2. Зависимая система отопления потребителей

Для зависимых схем, с непосредственным, элеваторным или насосным смещением необходимо дополнительно занести следующую информацию:

• Расчетный располагаемый напор в СО, м- задается расчетное значение располагаемого напора (расчетное сопротивление системы отопления, м) при проектирования системы отопления, например 1 метр вод.ст. для элеваторных схем присоединения и 3, 4, 5 м вод.ст. и т.д. для насосных схем присоединения.

16.2.2.1.3. Независимая система отопления потребителей

Для независимых схем, подключенных через теплообменный аппарат необходимо дополнительно занести следующую информацию:

- 1. Количество секций ТО на СО- указывается количество секций теплообменного аппарата на СО например 1, 2, 3 и т.д;
 - 2. Потери напора в 1-й секции ТО на СО, м-указываются потери напора в одной секции ТО на СО, например 0.5, 1, 1.5 м вод.ст;
 - 3. Количество параллельных групп ТО на СО- указывается количество параллельных групп теплообменного аппарата на СО;
 - 4. Расчетная темп. сет. воды на выходе из ТО, °С- расчетная темп. сетевой воды на выходе из ТО (выход 2ого контура) на систему отопления задается пользователем, например 95 °C;
 - 5. Расчетная темп. сет.воды на выходе из потреб., °С-задается пользователем расчетная темп. сет. воды на выходе из потребителя (выход 1ого контура). Если на выходе из СО (по второму контуру) 70, то эта температура должна быть выше, чем 70, например 75 °С.

Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

- Фактически установленное оборудование:
 - Коэффициент пропускной способности регулятора СО- задается коэффициент пропускной способности регулятора давления «подпора» в СО;
 - Номер установленного элеватора- задается номер фактически установленного элеватора, например 1, 2, 3;
 - Диаметр установленного сопла элеватора, мм- задается значение диаметра фактически установленного сопла элеватора, например 3, 5, 7 мм.
- Установленные шайбы на систему отопления:
 - Диаметр установленной шайбы на под.тр-де перед СО, мм-задается значение диаметра фактически установленной шайбы на подающем трубопроводе перед СО;
 - Количество установленных шайб на под.тр-де перед СО, штзадается количество установленных шайб на подающем трубопроводе перед СО;
 - Диаметр установленной шайбы на обр.тр-де после СО, мм-задается значение диаметра фактически установленной шайбы на обратном трубопроводе после СО;
 - Количество установленных шайб на обр.тр-де после СО, штзадается количество установленных шайб на обратном трубопроводе после СО.

16.2.2.1.4. Данные по Системе Вентиляции потребителей

При наличии системы вентиляции необходимо указать:

• Расчетная нагрузка на вентиляцию, Гкал/ч - задается пользователем по проектным данным в (Гкал/ч). При отсутствии проектных данных расчетные

- тепловые нагрузки на вентиляцию могут быть определены по наружному объему здания или поверхности нагрева теплопотребляющего оборудования. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите <u>настройки расчетов;</u>
 - Коэффициент изменения нагрузки вентиляции- задается пользователем в случае необходимости увеличения нагрузки на вентиляцию по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное значение нагрузки на вентиляцию будет увеличено соответственно на 10 или 20%;
 - Расчетная темп. наружного воздуха для СВ, °С- задается расчетное значение температуры наружного воздуха для проектирования системы вентиляции, например -20,-15, -11 °с и т.д;
 - Расчетная темп. внутреннего воздуха для CB, °C- задается расчетное значение температуры воздуха внутри отапливаемых помещений при проектировании системы вентиляции, например 20, 18, 16 или 10 °C;
 - Расчетный располагаемый напор в СВ, м- задается расчетное значение располагаемого напора (расчетное сопротивление калорифера, м вод.ст.) при проектирования системы вентиляции, например 0.5, 1.0, 1.5 м вод.ст;
 - Наличие регулирующего клапана на СВ- указывается из списка наличие регулирующего клапана на систему вентиляции.

Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

Установленные шайбы на систему вентиляции:

- Диаметр установленной шайбы на систему вентиляции, мм-задается значение диаметра фактически установленной шайбы на систему вентиляции;
- Количество установленных шайб на систему вентиляции, штзадается количество установленных шайб на систему вентиляции.

16.2.2.1.5. Данные по Системе ГВС потребителей

При наличии системы горячего водоснабжения, независимо от выбранной схемы присоединения следует указать:

- Расчетная средняя нагрузка на ГВС, Гкал/ч-задается пользователем по проектным данным в (Гкал/ч). При отсутствии проектных данных расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите настройки расчетов;
- Коэффициент изменения нагрузки ГВС- задается пользователем в случае необходимости увеличения нагрузки на ГВС по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное среднее значение нагрузки на ГВС будет увеличено соответственно на 10 или 20%;

- •—Число жителей- задается количество жителей для данного узла ввода, для учета часовой неравномерности;
- Температура воды на ГВС, °С- задается температура горячей воды, например 60, 65 и т.д. °С;
- Температура холодной воды, °С- задается температура холодной воды, например 5 °С;
- *Наличие* регулятора температуры- выбирается из списка наличие регулирующего устройства на систему ГВС;
- Максимальное давление на ГВС, м- задается максимально допустимое давление в обратном трубопроводе на ГВС для конкретного потребителя. Если поле не задано то по умолчанию используется значение из Настройки расчетов;
- Напор насоса в контуре ГВС, м- задается при необходимости напор повысительного насоса в системе ГВС.
- ГВС с открытым водоразбором
 - Потери напора в системе ГВС, м задается величина потери напора в системе горячего водоснабжения.
- При наличии циркуляционной линии:
 - Доля циркуляции от расхода на ГВС, % задается доля циркуляционного расхода ГВС от среднечасового расхода или средней нагрузки на ГВС в процентах, например 10, 15, 20. Как это сделать смотрите настройки расчетов;
 - Температура воды в цирк. контуре, °C задается температура воды в циркуляционном контуре ГВС. Она на 5-10 °C ниже чем температура воды на ГВС, например 45, 50 °C.
- ГВС с закрытым водоразбором и одноступенчатой схемой
 - Количество секций ТО ГВС I ступень указывается количество секций теплообменного аппарата 10й ступени на ГВС например 1, 2, 3 и т.д;
 - Количество паралл. групп ТО ГВС I ступень указывается количество параллельных групп теплообменного аппарата 1ой ступени на ГВС;
 - Потери напора в одной секции I ступени, м указываются потери напора в одной секции ТО 1ой ступени на ГВС, например 0.5, 1, 1.5 м вод.ст;
 - Текущая температура холодной воды, °С- используется для поверочного расчета для закрытой системы ГВС. Задается температура холодной (водопроводной) воды на входе 2 контура нижней ступени;
 - Балансовый коэффициент закр.ГВС используется при определении балансовой нагрузки в наладочном расчете для закрытых схем ГВС. Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балансовый коэффициент. Коэффициент позволяет пользователю регулировать величину нагрузки (и расхода) на которую производится наладка. Если значение поля не задано, расчет берет значение коэффициента по умолчанию: 1.15

для одноступенчатой схемы, 1.1 для двухступенчатой смешанной, 1.25 для двухступенчатой последовательной.

При наличии циркуляционной линии:

- Доля циркуляции от расхода на ГВС, % задается доля циркуляционного расхода ГВС от среднечасового расхода или средней нагрузки на ГВС в процентах, например 10, 15, 20. Как это сделать смотрите настройки расчетов;
- Температура воды в цирк. контуре, °C задается температура воды в циркуляционном контуре ГВС. Она на 5-10 °C ниже чем температура воды на ГВС, например 45, 50 °C.
- Система ГВС с закрытым водоразбором и двухступенчатой схемой
 - Количество секций ТО ГВС I ступень указывается количество секций теплообменного аппарата 10й ступени на ГВС например 1, 2, 3 и т.д;
 - Количество паралл. групп ТО ГВС I ступень указывается количество параллельных групп теплообменного аппарата 10й ступени на ГВС;
 - Потери напора в одной секции I ступени, м указываются потери напора в одной секции ТО 1ой ступени на ГВС, например 0.5, 1, 1.5 м вод.ст;
 - Количество секций ТО ГВС II ступень указывается количество секций теплообменного аппарата 20й ступени на ГВС например 1, 2, 3 и т.д;
 - Количество паралл. групп ТО ГВС II ступень указывается количество параллельных групп теплообменного аппарата 20й ступени на ГВС;
 - Потери напора в одной секции II ступени, м указываются потери напора в одной секции то 20й ступени на ГВС, например 0.5, 1, 1.5 м вод.ст;
 - *Текущая* температура холодной воды, °С- используется для поверочного расчета для закрытой системы ГВС. Задается температура холодной (водопроводной) воды на входе 2 контура нижней ступени;
 - Балансовый коэффициент закр.ГВС используется при определении балансовой нагрузки в наладочном расчете для закрытых схем ГВС. Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балансовый коэффициент. Коэффициент позволяет пользователю регулировать величину нагрузки (и расхода) на которую производится наладка. Если значение поля не задано, расчет берет значение коэффициента по умолчанию: 1.15 для одноступенчатой схемы, 1.1 для двухступенчатой смешанной, 1.25 для двухступенчатой последовательной.

При наличии циркуляционной линии:

- Доля циркуляции от расхода на ГВС, % задается доля циркуляционного расхода ГВС от среднечасового расхода или средней нагрузки на ГВС в процентах, например 10, 15, 20. Как это сделать смотрите настройки расчетов;
- Температура воды в цирк. контуре, °C задается температура воды в циркуляционном контуре ГВС. Она на 5-10 °C ниже чем температура воды на ГВС, например 45, 50 °C.

• Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

Установленные шайбы в системе горячего водоснабжения:

- Диаметр установленной циркуляционной шайбы на ГВС, мм задается значение диаметра фактически установленной шайбы на ГВС;
- Количество установленных циркуляционных шайб на ГВС, шт. задается количество установленных шайб на ГВС;
- Диаметр установленной шайбы в циркуляционной линии ГВС, мм задается значение диаметра фактически установленной шайбы на циркуляционной линии ГВС;
- Количество установленных шайб в циркуляционной линии ГВС, шт. задается количество установленных шайб на циркуляционной линии ГВС.

Для расчетов схем с теплообменными аппаратами при различных режимах, следует задать параметры теплообменника на какой-то известный режим. Расчет схем потребителей с параллельным подключением теплообменника на ГВС можно выполнять на:

- Жестко заданные испытательные параметры, «зашитые» в программе: T11 = 70, T12 = 30, а *T21* и *T22*берутся по значениям холодной и горячей воды, заданной на источнике;
- Испытательные параметры, которые пользователь сам может задавать на потребителе. Это могут быть как проектные параметры, так и параметры, измеренные при испытании теплообменного аппарата. Подробнее об испытательных параметрах см. " Испытательные параметры теплообменного аппарата".

При центральном регулировании отпуска теплоты по совместной нагрузке отопления и горячего водоснабжения (скорректированный или повышенный температурный график) и отсутствии автоматических устройств регулирования дросселирующие устройства или балансировочные клапаны должны устанавливаться на абонентском вводе перед точкой отбора воды на горячее водоснабжение и регулировать два вида нагрузки отопление и ГВС. Для этого следует указать установленные шайбы на вводе:

- Диаметр шайбы на вводе на под.тр-де, мм-задается диаметр шайбы на вводе на подающем трубопроводе;
- Количество шайб на вводе на под. тр-де, шт-задается количество шайб на вводе на подающем трубопроводе;
- Диаметр шайбы на вводе на обр. тр-де, мм-задается диаметр шайбы на вводе на обратном трубопроводе;
- Количество шайб на вводе на обр. тр-де, шт-задается количество шайб на вводе на обратном трубопроводе.

16.2.3. Центральный тепловой пункт (ЦТП)

Для выполнения расчетов обязательно надо занести следующую информацию:

- -Номер схемы подключения ЦТП выбирается схема присоединения узла ввода.
 Схемы приведены в Раздел А.2, «Расчетные схемы присоединения центральных тепловых пунктов к тепловой сети»;
- Способ дросселирования на ЦТП- указывается способ дросселирования на ЦТП цифрой от 0 до 6;
- 0- дросселирование на ЦТП не производится, если это не является обязательным;
- 1- дросселируется выход из ЦТП на отопление, шайба устанавливается всегда на подающем трубопроводе;
- 2- дросселируется выход из ЦТП на отопление, шайба устанавливается всегда на обратном трубопроводе;
- 3- дросселируется выход из ЦТП на отопление, места установки шайб определяются автоматически;
- 4- устанавливаются шайбы на вводе в ЦТП (общие на отопление и ГВС), места установки шайб определяются автоматически;
- 5- устанавливаются шайбы на вводе в ЦТП (общие на отопление и ГВС), шайба устанавливается всегда на подающем трубопроводе;
- 6- устанавливаются шайбы на вводе в ЦТП (общие на отопление и ГВС), шайба устанавливается всегда на обратном трубопроводе;
- Запас напора при дросселировании, м задается пользователем запас напора при дросселировании, например 1, 2 и т.д. метров.

16.2.3.1. Данные по системе отопления ЦТП

При наличии системы отопления необходимо указать:

- Расчетная температура на входе 1 контура, °С-Задается расчетное значение температуры теплоносителя на входе в первый контур, например 150, 130, 110 или 95°С;
- Расчетная температура на выходе 1 контура, °С-Задается расчетное значение температуры теплоносителя на выходе из первого контура, например 75, 80 °С;
- Расчетная температура на входе 2 контура, °С-Задается расчетное значение температуры теплоносителя на входе во второй контур, например 70°С;
- Расчетная температура на выходе 2 контура, °С-Задается расчетное значение температуры теплоносителя на выходе из второго контура, например 95°С;
- Расчетная температура внутр. воздуха для СО, °С- задается расчетное значение температуры воздуха внутри отапливаемых помещений при проектировании системы отопления, например 20, 18, 16 или 10°С;
- Расчетная температура наружного воздуха, °С- задается расчетное значение температуры наружного воздуха, которое принимается в соответствии со СНиП, например -30, 35°С.
- Зависимая система отопления ЦТП

- •—*Располагаемый напор второго контура, м.* при независимом подключении системы отопления задается располагаемый напор второго контура;
- Напор в обратнике второго контура, м- при независимом подключении системы отопления задается напор в обратном трубопроводе второго контура. Расчетный напор в обратном трубопроводе задается с учетом геодезической отметки расположения ЦТП, например геодезическая отметка 50 метров, напор в обратном трубопроводе 20 метров, тогда расчетный напор в обратном трубопроводе равен 50 + 20 = 70 метров.
- Независимая система отопления ЦТП
 - Располагаемый напор второго контура, м- при независимом подключении системы отопления задается располагаемый напор второго контура;
 - Напор в обратнике второго контура, м- при независимом подключении системы отопления задается напор в обратном трубопроводе второго контура. Расчетный напор в обратном трубопроводе задается с учетом геодезической отметки расположения ЦТП, например геодезическая отметка 50 метров, напор в обратном трубопроводе 20 метров, тогда расчетный напор в обратном трубопроводе равен 50 + 20 = 70 метров;
 - Количество секций ТО на СО- задается пользователем количество секций ТО, например, 1, 2, 3 и т.д;
 - Потери напора в 1-й секции ТО на СО, м-задаются пользователем потери напора в теплообменном аппарате, например, 0.1, 0.2, 0.3, м;
 - Количество параллельных групп ТО на СО-задается количество параллельных групп ТО, например, 1, 2, 3 и т.д.

Испытательные параметры теплообменного аппарата:

- Исп. температура воды на входе 1 контура, °С-задается температура воды на входе 1 контура по результатам испытаний, если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах смотрите раздел испытательные параметры TO;
- Исп. температура воды на выходе 1 контура, °С- задается температура воды на выходе 1 контура по результатам испытаний, если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах смотрите раздел испытательные параметры ТО;
- Исп. температура воды на входе 2 контура, °С-задается температура воды на входе 2 контура по результатам испытаний, если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах смотрите раздел испытательные параметры TO;
- Исп. температура воды на выходе 2 контура, °С- задается температура воды на выходе 2 контура по результатам испытаний, если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах смотрите раздел испытательные параметры ТО.

Подробнее об испытательных параметрах можно узнать в разделе см. " Испытательные параметры теплообменного аппарата"

- Для поверочного расчета следует дополнительно указать следующую информацию:
 - *Текущая температура наружного воздуха*, *°С*-задается пользователем текущая температура наружнего воздуха, например 8,0,-10,-26 °С;
 - Исп. расход 1 контура, т/ч- задается пользователем испытательный расход 1 контура по результатам испытаний. Если испытания не проводились, то для наладочного расчета задается равным 0. Для поверочного расчета можно задать проектное значение;
 - Исп. расход 2 контура, т/ч- задается пользователем испытательный расход 2 контура по результатам испытаний. Если испытания не проводились, то для наладочного расчета задается равным 0. Для поверочного расчета можно задать проектное значение.

Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

- Номер установленного группового элеватора- задается номер установленного группового элеватора, например 1, 2, 3, 4, 5, 6, 7;
- Диаметр установленного сопла элеватора, мм- задается значение установленного диаметра сопла элеватора, например 3, 5, 7, 9 мм.

Установленные шайбы на систему отопления:

- Диаметр установленной шайбы на под.тр-де, мм- задается пользователем диаметр установленной шайбы на подающем тр-де 1 контура;
- Количество установленных шайб на под.тр-де (1 контур), шт- задается пользователем количество установленных шайб на подающем тр-де 1 контура;
- Диаметр установленной шайбы на обр.тр-де (1 контур), ммзадается пользователем диаметр установленной шайбы на обратном тр-де 1 контура;
- Количество установленных шайб на обр.тр-де (1 контур), шт- задается пользователем количество установленных шайб на обратном тр-де 1 контура.

16.2.3.2. Данные по системе ГВС на ЦТП

16.2.3.2.1. Одноступенчатая схема подключения ГВС на ЦТП

16.2.3.2.1.1. При использовании вспомогательного участка

- Располагаемый напор 2 контура ГВС, м-для закрытых систем горячего водоснабжения задается располагаемый напор во втором контуре;
- Напор в обратнике 2 контура ГВС, м- для закрытых систем горячего водоснабжения задается напор в циркуляционном трубопроводе во второго контура;
- Количество секций ТО ГВС 1ой ступени- задается пользователем количество секций ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС 1ой ступени-задается количество параллельных групп ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;

- •—Потери напора в одной секции 1ой ступени, м-задаются потери напора в одной из секций ТО 1 ступени на ГВС например, 1 метр;
- *Температура холодной воды*, °С- задается пользователем температура холодной водопроводной воды;
- *Температура воды на ГВС*, °С- задается температура воды поступающей в систему горячего водоснабжения.

Испытательные параметры:

- Исп. температура на входе 1 контура нижней ступени, °С;
- Исп. температура на выходе 1 контура нижней ступени, °С;
- Исп. температура на входе 2 контура нижней ступени, °С;
- Исп. температура на выходе 2 контура нижней ступени, °С;
- Исп. тепловая нагрузка нижней ступени, Гкал/час.

Подробнее об испытательных параметрах можно узнать в разделе см. " Испытательные параметры теплообменного аппарата"

16.2.3.2.1.2. Без вспомогательного участка

- Расчетная средняя нагрузка на ГВС, Гкал/ч-задается пользователем по проектным данным. При отсутствии проектных данных расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите здесь;
- Балансовый коэффициент закр. ГВС- значение этого поля используется при определении балансовой нагрузки в наладочном расчете для закрытых схем ГВС. Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балансовый коэффициент. Коэффициент позволяет пользователю регулировать величину нагрузки (и расхода) на которую производится наладка;
- Количество секций ТО ГВС 1ой ступени- задается пользователем количество секций ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС 1ой ступени-задается количество параллельных групп ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Потери напора в одной секции 1ой ступени, м-задаются потери напора в одной из секций ТО 1 ступени на ГВС например, 1 метр;
- *Температура* холодной воды, °С- задается пользователем температура холодной водопроводной воды;
- *Температура воды на ГВС*, °С- задается температура воды поступающей в систему горячего водоснабжения.

Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

1. Наличие регулятора на ГВС - указывается признак наличия регулятора температуры на систему горячего водоснабжения: 0 - отсутствует; 1 - установлен.

Установленные шайбы на ГВС:

- 1. Диаметр установленной шайбы на ГВС, мм- задается пользователем диаметр установленной шайбы на ГВС (1 контур);
- 2. Количество установленных шайб на ГВ С, шт-задается пользователем количество установленных шайб на ГВС (1 контур).

16.2.3.2.2. Двухступенчатая схема подключения ГВС на ЦТП

16.2.3.2.2.1. При использовании вспомогательного участка

- Располагаемый напор 2 контура ГВС, м-для закрытых систем горячего водоснабжения задается располагаемый напор во втором контуре;
- Напор в обратнике 2 контура ГВС, м- для закрытых систем горячего водоснабжения задается напор в циркуляционном трубопроводе во второго контура;
- Количество секций ТО ГВС 1ой ступени- задается пользователем количество секций ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС 1ой ступени-задается количество параллельных групп ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Потери напора в одной секции 1ой ступени, м-задаются потери напора в одной из секций ТО 1 ступени на ГВС например, 1 метр;
- Количество секций ТО ГВС II ступень-задается пользователем количество секций ТО 2 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС II ступень-задается количество параллельных групп ТО 2 ступени на ГВС например, 1, 2, 3 и т.д;
- Потери напора в одной секции II ступени, м-задаются потери напора в одной из секций ТО 2 ступени на ГВС например, 1 метр;
- Температура холодной воды, °С- задается пользователем температура холодной водопроводной воды;
- *Температура воды на ГВС*, °С- задается температура воды поступающей в систему горячего водоснабжения.

Испытательные параметры:

- Исп. температура на входе 1 контура нижней ступени, °С;
- Исп. температура на выходе 1 контура нижней ступени, °С;
- Исп. температура на входе 2 контура нижней ступени, °С;
- Исп. температура на выходе 2 контура нижней ступени, °С;
- Исп. тепловая нагрузка нижней ступени, Гкал/час;
- Исп. температура на входе 1 контура II ступени, °С;
- Исп. температура на выходе 1 контура II ступени, °С;
- Исп. температура на входе 2 контура II ступени, °С;

- •-Исп. температура на выходе 2 контура II ступени, °С;
- Исп. тепловая нагрузка II ступени, Гкал/час.

Подробнее об испытательных параметрах можно узнать в разделе *см.* " Испытательные параметры теплообменного аппарата"

16.2.3.2.2.2. Без вспомогательного участка

- Расчетная средняя нагрузка на ГВС, Гкал/ч-задается пользователем по проектным данным. При отсутствии проектных данных расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите здесь;
- Балансовый коэффициент закр. ГВС- значение этого поля используется при определении балансовой нагрузки в наладочном расчете для закрытых схем ГВС. Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балансовый коэффициент. Коэффициент позволяет пользователю регулировать величину нагрузки (и расхода) на которую производится наладка;
- Количество секций ТО ГВС 1ой ступени- задается пользователем количество секций ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС 1ой ступени-задается количество параллельных групп ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Потери напора в одной секции 1ой ступени, м-задаются потери напора в одной из секций ТО 1 ступени на ГВС например, 1 метр;
- Количество секций ТО ГВС II ступень-задается пользователем количество секций ТО 2 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС II ступень- задается количество параллельных групп ТО 2 ступени на ГВС например, 1, 2, 3 и т.д;
- Потери напора в одной секции II ступени, м-задаются потери напора в одной из секций ТО 2 ступени на ГВС например, 1 метр.

Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

1. Наличие регулятора на ГВС - указывается признак наличия регулятора температуры на систему горячего водоснабжения: 0 - отсутствует; 1 - установлен.

Установленные шайбы на ГВС:

- 1. Диаметр установленной шайбы на ГВС, мм- задается пользователем диаметр установленной шайбы на ГВС (1 контур);
- 2. Количество установленных шайб на ГВ С, шт-задается пользователем количество установленных шайб на ГВС (1 контур).

16.2.4. Обобщенный потребитель

Обобщенный потребитель используется для расчета магистральных трубопроводов, при отсутствии данных по внутриквартальным сетям, по потребителям.

- •—*H_geo*, *Геодезическая* отметка, *м* Задается геодезическая отметка трубопровода подключающего данный узел ввода;
- *N_schem*, *Способ задания нагрузки* указывается способ задания нагрузки на обобщенном потребителе, для этого встать на соответствующую строку и нажать на кнопку с в открывшемся меню выбрать требуемый пункт: задается расходом или задается сопротивлением;
- *Н*, *Требуемый напор*, *м* Задается требуемый напор на обобщенном потребителе;
- Вета, Доля водоразбора из подающего тр-да Задается доля отбора воды (от 0 до 1) из подающего трубопровода при открытом водоразборе системы горячего водоснабжения. Например, при значении данного поля 0 - весь отбор воды будет происходить из обратного трубопровода, а при значении 0.5- половина воды будет отбираться из подающего, а половина из обратного трубопроводов.
- При задания нагрузки расходом:
 - Gpod, Расход на СО, СВ и закр. системы ГВС, т/ч- Задается суммарный расход теплоносителя в подающем трубопроводе;
 - Кѕо, Коэфф. изменения расхода на СО, СВ и закр. системы ГВС- Задается коэффициент изменения циркулирующего расхода. Например, при значении данного поля 1.1, значение поля Gpod, Расход на СО, СВ и закр. системы ГВС будет увеличено на 10%;
 - Gu_r, Расход на открытый водоразбор, т/ч Задается расход теплоносителя на открытый водоразбор системы горячего водоснабжения. В данном поле также можно задать величину расхода учитывающего утечки;
 - Кдv, Коэффициент изменения расхода на водоразбор-Задается коэффициент изменения расхода на открытый водоразбор системы горячего водоснабжения. Например, при значении данного поля 1.2, значение поля Gu_r, Расход на открытый водоразбор будет увеличено на 20%.
- При задания нагрузки сопротивлением:
 - Sr, Расчетное обобщенное сопротивление, м/(т/ч) *2- Задается расчетное обобщенное сопротивление обобщенного потребителя, например квартала.

Также при необходимости можно задать:

- *Hzdan*, *Минимальный статический напор*, *м* Задается значение минимального статического напора;
- Способ определения температуры обр. воды -Задается цифрой способ определения температуры: 0 (или пусто) -по отопительной формуле; 1 по фактической температуре. Для учета фактической температуры в различных расчетах следует включить эту опцию в настройках расчетов;
- Фактическая температура обр. воды, °С- Указывается фактическая температура воды на выходе из обобщенного потребителя.

Сводная таблица данных по обобщенному потребителю приведена в разделе см. " Таблицы баз данных элементов тепловой сети".

16.2.5. Участок тепловой сети

Для выполнения наладочного и поверочного расчетов надо занести следущую информацию по участкам тепловой сети

- *L*, *Длина участка*, *м* задается длина участка трубопровода в плане с учетом длины П-образных компенсаторов. Поле Длина участка можно заполнить автоматически для всех участков тепловой сети. Подробнее *см.* "*Автоматическое занесение длины с карты*";
- Dpod, Внутренний диаметр подающего трубопровода, м-задается в метрах внутренний диаметр подающего трубопровода, например 0.05, 0.1, 0.15 м. Технические характеристики стальных трубопроводов для тепловой сети приведены в приложении (Приложение С, *Технические характеристики стальных трубопроводов для тепловой сети*);
- Dobr, Внутренний диаметр обратного трубопровода, м-задается в метрах внутренний диаметр обратного трубопровода, например 0.05, 0.1, 0.15 м. Технические характеристики стальных трубопроводов для тепловой сети приведены в приложении (Приложение С, *Технические характеристики стальных трубопроводов для тепловой сети*);
- Ке_роd, Шероховатость подающего трубопровода, мм- Задается коэффициент шероховатости подающего трубопровода, например 0.5, 1, 2 мм. Для новых стальных труб коэффициент шероховатости принимается в соответствии со СНиП 0.5 мм;
- Ke_obr, Шероховатость обратного трубопровода, мм- Задается коэффициент шероховатости обратного трубопровода, например 0.5, 1, 2 мм. Для новых стальных труб коэффициент шероховатости принимается в соответствии со СНиП 0.5 мм;
- Кг_род, Коэффициент местного сопротивления подающего трубопровода- Задается коэффициент местного сопротивления для подающего трубопровода, например 1.1 или 1.2. В этом случае действительная длина участка трубопровода будет увеличена на 10 или 20 % соответственно. Если коэффициент местного сопротивления для подающего трубопровода будет задан равным 1.0, то действительная длина подающего трубопровода увеличена не будет;
- *Kz_obr*, *Коэффициент местного сопротивления обратного трубопровода* Задается коэффициент местного сопротивления для обратного трубопровода, например 1.1 или 1.2. В этом случае действительная длина участка трубопровода будет увеличена на 10 или 20 % соответственно. Если коэффициент местного сопротивления для обратного трубопровода будет задан равным 1.0, то действительная длина обратного трубопровода увеличена не будет.

🖉 Примечание

Если местные сопротивления неизвестны, то в этом случае пользователь может увеличить действительную длину трубопровода добавлением эквивалентной длины, характеризующей потери в местных сопротивлениях. Для этого следует задать для полей Коэффициент местного сопротивления

под. тр-да. и Коэффициент местного сопротивления под. тр-да. значения от 1.05 до 1.2

Если вид местных сопротивлений и их количество известны, их следует указать с помощью справочника по местным сопротивлениям. Этот справочник заносится в поле Местные сопротивления под. (обр.) тр-да;

- Zpod_str, Местные сопротивления под. тр-да Задаются местные сопротивления, установленные на подающем трубопроводе. Как работать со справочником по местным сопротивлениям см. в разделе см. "Справочник по местным сопротивлениям". Сумма всех сопротивлений, автоматически записывается в поле Сумма коэф. местных сопротивлений под. тр-да. Значения коэффициентов местных сопротивлений приведены в приложении (Приложение D, Коэффициенты местных сопротивлений на участке трубопровода);
- Zobr_str, Местные сопротивления обр. тр-да Задаются местные сопротивления, установленные на обратном трубопроводе. Как работать со справочником по местным сопротивлениям см. в разделе см. "Справочник по местным сопротивлениям". Сумма всех сопротивлений, автоматически записывается в поле Сумма коэф. местных сопротивлений обр. тр-да. Значения коэффициентов местных сопротивлений приведены в приложении (Приложение D, Коэффициенты местных сопротивлений на участке трубопровода).

🖉 Примечание

Указывая местные сопротивления, установленные на сети, следует, чтобы значения полей Коэффициент местного сопротивления подающего трубопровода и Коэффициент местного сопротивления обратного трубопровода были равными 1.

Также при необходимости можно задать:

- Zarost_pod , Зарастание подающего трубопровода, мм-Задается пользователем величина зарастания подающего трубопровода, например 5, 10, 15 мм. Зарастание трубопровода приводит к уменьшению внутреннего диаметра трубопровода и резкому увеличению гидравлических потерь;
- Zarost_obr, Зарастание обратного трубопровода, мм-Задается пользователем величина зарастания обратного трубопровода, например 5, 10, 15 мм. Зарастание трубопровода приводит к уменьшению внутреннего диаметра трубопровода и резкому увеличению гидравлических потерь;
- StatZone, Разделитель зон статического напора Задается, если необходимо, признак разделения данным участком сети на зоны с разным статическим напором: 1 - от начала участка начинается новая зона, 0или пусто разделение на зоны отсутствует;
- Q1_pod, Дополнительные потери тепла под.тр-да, ккал-Задаются дополнительные фиксированные тепловые потери для подающего трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников. При этом значения потерь должны были задаваться обязательно положительным числом.

Чтобы имитировать поступление в сеть дополнительной тепловой энергии, независимо от источника его происхождения, например, от греющих контуров

других технических объектов, утилизирующих свое тепло и т.п. нужно обязательно задавать отрицательное значение. Расчет будет это воспринимать не как потерю, а как поступление дополнительного тепла в систему (тепловая подпитка). При этом температура теплоносителя на выходе из участка (при отсутствии других тепловых потерь) будет выше температуры на входе в участок;

• Q1_obr, Дополнительные потери тепла обр. тр-да, ккал-задаются дополнительные фиксированные тепловые потери обратного трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников. При этом значения потерь должны были задаваться обязательно положительным числом.

Чтобы имитировать поступление в сеть дополнительной тепловой энергии, независимо от источника его происхождения, например, от греющих контуров других технических объектов, утилизирующих свое тепло и т.п. нужно обязательно задавать отрицательное значение. Расчет будет это воспринимать не как потерю, а как поступление дополнительного тепла в систему (тепловая подпитка). При этом температура теплоносителя на выходе из участка (при отсутствии других тепловых потерь) будет выше температуры на входе в участок.

Участок можно задавать с помощью сопротивления для этого следует задать следующие поля

- Сопротивление подающего тр-да, м/(т/ч) *2- Задается пользователем величина сопротивления подающего трубопровода. Данная величина задается для уточнения математической модели в случае, если были проведены замеры расхода теплоносителя и давления в начале и конце участка сети;
- Сопротивление обратного тр-да, м/ (т/ч) *2- Задается пользователем величина сопротивления обратного трубопровода. Данная величина задается для уточнения математической модели в случае, если были проведены замеры расхода теплоносителя и давления в начале и конце участка сети.

При моделировании участка с помощью сопротивления, значения суммы коэффициентов местных сопротивления, шереховатости и зарастания не учитываются.

Сводная таблица данных по участкам тепловой сети приведена в разделе см. "Таблицы баз данных элементов тепловой сети".

16.2.6. Насосная станция

Для выполнения наладочного и поверочного расчетов надо занести следущую информацию по насосным станциям сети:

Насосы можно моделировать двумя способами:

• Задавая постоянный напор, создаваемый насосом

Для этого следует занести следующие поля:

• *Нрод*, *Напор* насоса на подающем трубопроводе, м-Задается пользователем напор развиваемый насосом на подающем трубопроводе. Если насос повышает напор, то значение записывается со знаком плюс, если понижает напор, то со знаком минус, например -30, -40 метров, а также 0 если насос не развивает никакого напора;

• *Ноbr*, *Напор* насоса на обратном трубопроводе, *м*- Задается пользователем напор развиваемый насосом на обратном трубопроводе. Если насос повышает напор, то значение записывается со знаком плюс, если понижает напор, то со знаком минус, например -30, -40 метров, а также 0 если насос не развивает никакого напора.

Лримечание

Если насос установлен только на подающем трубопроводе, значение напора на обратном трубопроводе задавать не следует, и наоборот.

• Указывая марку насоса из справочника

Марка насоса указывается в следующих полях:

- Mark_pod, Марка насоса на подающем трубопроводе Указывается марка установленного насоса на подающем трубопроводе. Для указания марки насоса необходимо в окне семантической информации встать на поле ввода данных строки "Марка насоса на подающем и нажать кнопку. В появившемся справочнике насосов встать на строку с требуемым насосом и нажать кнопку "Выбор". Подробное описание справочника по насосам можно рассмотреть в разделе см. "Справочник по насосам";
- Mark_obr, Марка насоса на обратном трубопроводе Указывается марка установленного насоса на обратном трубопроводе. Для указания марки насоса необходимо в окне семантической информации встать на поле ввода данных строки "Марка насоса на обратном и нажать кнопку В появившемся справочнике насосов встать на строку с требуемым насосом и нажать кнопку «Выбор». Подробное описание справочника по насосам можно рассмотреть в разделе см. "Справочник по насосам".

Примечание

При указании марки насоса на подающем или обратном трубопроводах, значения полей Напор насоса (*Hpod u Hobr*) учитываться не будут.

Параллельно установленные насосы с одинаковыми марками можно задать с помощью следующих полей:

- 1. Число насосов на подающем тр-де указывается число параллельно работающим насосов с одинаковой QH характеристикой, установленные на подающем трубопроводе;
- 2. Число насосов на обратном тр-де указывается число параллельно работающим насосов с одинаковой QH характеристикой, установленные на обратном трубопроводе.

Сводная таблица данных по насосам приведена в разделе см. " Таблицы баз данных элементов тепловой сети".

16.2.7. Вычисляемая дроссельная шайба

В случае если шайба установлена только на подающем трубопроводе, значения полей связанные с обратным трубопроводом заполнять не следует, и наоборот.

Для выполнения наладочного и поверочного расчета нужно занести следующую информацию:

- *Dbp_pod*, *Диаметр* байпаса на подающем трубопроводе, м-Задается пользователем диаметр байпаса подающего трубопровода, например 0.05, 0.1 и т.д. метров;
- Dbp_obr, Диаметр байпаса на обратном трубопроводе, м-Задается пользователем диаметр байпаса обратного трубопровода, например 0.05, 0.1 и т.д. метров;
- Lbp_pod , Длина байпаса на подающем трубопроводе, м-Задается длина байпаса на подающем трубопроводе, например 5, 8 и т.д. метров;
- *Lbp_obr*, *Длина байпаса на обратном трубопроводе*, *м*-Задается длина байпаса на обратном трубопроводе, например 5, 8 и т.д. метров;
- Ке_bp, Шероховатость байпаса, мм-Задается шероховатость байпаса, например 0.5, 1, 2, 3 и т.д. мм.

Также можно задать:

- Zbp_pod , Сумма коэффициентов местных сопротивлений на байпасе подающего трубопровода-Задается сумма коэффициентов местных сопротивлений на байпасе подающего трубопровода, например 4, 8 и т.д. Значения коэффициентов местных сопротивлений приведены в таблице Приложения 2;
- Zbp_obr, Сумма коэффициентов местных сопротивлений на байпасе обратного трубопровода-Задается сумма коэффициентов местных сопротивлений на байпасе обратного трубопровода, например 4, 8 и т.д. Значения коэффициентов местных сопротивлений приведены в таблице Приложения 2;
- *Hzapas*, Запас напора, м- Задается пользователем запас напора на шайбе, например 1, 2 и т.д. метров.

Примечание

В результате выполнения наладочного расчета для вычисляемой дроссельной шайбы определяются значения полей Диаметр шайбы на байпасе подающего (или обратного) трубопровода, мм и Количество шайб на байпасе подающего(или обратного) трубопровода.

Сводная таблица данных по вычисляемой дроссельной шайбе приведена в разделе *см.* "*Таблицы баз данных элементов тепловой сети*".

16.2.8. Устанавливаемая дроссельная шайба

В случае если шайба установлена только на подающем трубопроводе, значения полей связанные с обратным трубопроводом заполнять не следует, и наоборот.

Для выполнения наладочного и поверочного расчетов нужно занести следующую информацию по установленной дроссельной шайбе:

• *Dbp_pod*, *Диаметр* байпаса на подающем трубопроводе, м-Задается пользователем диаметр байпаса подающего трубопровода, например 0.05, 0.1 и т.д. метров;

- •-Dbp_obr, Диаметр байпаса на обратном трубопроводе, м-Задается пользователем диаметр байпаса обратного трубопровода, например 0.05, 0.1 и т.д. метров;
- Lbp_pod , Длина байпаса подающего трубопровода, м-Задается длина байпаса на подающем трубопроводе, например 5, 8 и т.д. метров;
- Lbp_obr, Длина байпаса обратного трубопровода, м-Задается длина байпаса на обратном трубопроводе, например 5, 8 и т.д. метров;
- Zbp_pod , Сумма коэффициентов местных сопротивлений на байпасе подающего трубопровода-Задается сумма коэффициентов местных сопротивлений на байпасе подающего трубопровода, например 4, 8 и т.д. Значения коэффициентов местных сопротивлений приведены в таблице Приложения 2;
- *Zbp_obr*, *Сумма коэффициентов местных сопротивлений на байпасе обратного трубопровода-* Задается сумма коэффициентов местных сопротивлений на байпасе обратного трубопровода, например 4, 8 и т.д. Значения коэффициентов местных сопротивлений приведены в таблице Приложения 2;
- Ке_bp, Шероховатость байпаса, мм-Задается шероховатость байпаса, например 0.5, 1, 2, 3 и т.д. мм;
- Dshb_pod , Диаметр шайбы на байпасе подающего трубопровода, мм-Задается пользователем диаметр установленной шайбы на байпасе подающего трубопровода. Для вычисляемой дроссельной шайбы значение данного поля определяется в результате выполнения наладочной задачи;
- Dshb_obr , Диаметр шайбы на байпасе обратного трубопровода, мм-Задается пользователем диаметр установленной шайбы на байпасе обратного трубопровода. Для вычисляемой дроссельной шайбы значение данного поля определяется в результате выполнения наладочной задачи;
- Nshb_pod, Количество шайб на байпасе подающего трубопровода, шт-Задается пользователем количество установленных шайб на байпасе подающего трубопровода. Для вычисляемой дроссельной шайбы значение данного поля определяется в результате выполнения наладочной задачи;
- Nshb_obr, Количество шайб на байпасе обратного трубопровода, шт-Задается пользователем количество установленных шайб на байпасе обратного трубопровода. Для вычисляемой дроссельной шайбы значение данного поля определяется в результате выполнения наладочной задачи.

Сводная таблица данных по устанавливаемой дроссельной шайбе приведена в разделе см. " Таблицы баз данных элементов тепловой сети".

16.2.9. Регулятор давления

Для выполнения наладочного и поверочного расчетов нужно занести следующую информацию по регулятору давления на подающем или обратном трубопроводе:

• *Н*, *Регулируемый параметр напор*, *м* (*расход*, *т*/ч)-Задается значение регулируемого давления в подающем трубопроводе с учетом геодезической отметки, например 120, 130 метров;

•-Кгед, Коэф. пропускной способности- Задается значение коэффициента пропускной способности регулятора (по паспортным данным устройства).

Сводная таблица данных по регулятору давления приведена в разделе см. "Таблицы баз данных элементов тепловой сети".

16.2.10. Регулятор располагаемого напора

Для выполнения наладочного и поверочного расчетов нужно занести следующую информацию по регулятору располагаемого напора на подающем или обратном трубопроводе:

- *Н*, *Регулируемый параметр напор*, *м* (*расход*, *т*/ч)-Задается значение регулируемого располагаемого напора, например 10, 20, 40 метров;
- *Кreg, Коэф. пропускной способности* Задается значение коэффициента пропускной способности регулятора (по паспортным данным устройства).

Сводная таблица данных по регулятору располагаемого напора приведена в разделе см. " Таблицы баз данных элементов тепловой сети".

16.2.11. Регулятор расхода

Для выполнения наладочного и поверочного расчетов нужно занести следующую информацию по регулятору расхода на подающем или обратном трубопроводе:

- *Н*, *Регулируемый параметр напор*, *м* (*расход*, *т*/ч)-Задается значение регулируемого расхода воды в подающем трубопроводе, например 20, 50, 100 т/ч;
- *Кreg, Коэф. пропускной способности* Задается значение коэффициента пропускной способности регулятора (по паспортным данным устройства).

Сводная таблица данных по регулятору расхода приведена в разделе см. "Таблицы баз данных элементов тепловой сети".

16.3. Испытательные параметры теплообменного аппарата

Для расчетов схем с теплообменными аппаратами при различных режимах, следует задать параметры теплообменника на какой-то известный режим. Это могут быть как проектные параметры, так и параметры, измеренные при испытании теплообменного аппарата. Назовем эти параметры испытательными.

Для задания теплообменника требуются следующие испытательные параметры:

- *T11*-температура на входе первого контура;
- *T12*-температура на выходе первого контура;
- *T21* температура на входе второго контура;
- *T22* температура на выходе второго контура;
- *Q*-тепловая нагрузка;

•—*G1*— расход первого контура;

• G2- расход второго контура.

В нашей модели нужно задавать значение *Q*, хотя измерить достаточно один из параметров *Q*, *G1* или *G2*, так как

$$Q = G1^{(T11-T12)}/1000 = G2^{(T22-T21)}/1000$$

Зная перечисленные параметры для одного режима, можно при любом другом режиме работы теплообменного аппарата по четырем заданным параметрам, используя известные математические зависимости, вычислить для этого режима значения остальных параметров.Например, на графике показано, как изменение расхода в первом контуре влияет на изменение температур на выходе первого и второго контуров.

Используя испытательные параметры теплообменного аппарата, в расчете можно моделировать регулятор температуры, поддерживающий постоянную температуру воды на выходе второго контура при изменении температуры на входе первого контура.

16.3.1. Схемы с параллельным подключением теплообменника на ГВС

Расчет схем потребителей с параллельным подключением теплообменника на ГВС можно выполнять на:

- Жестко заданные испытательные параметры, «зашитые» в программе: T11 = 70, T12 = 30, а *T21* и *T22*берутся по значениям холодной и горячей воды, заданной на источнике;
- Параметры, которые пользователь сам может задавать на потребителе. Испытательные параметры теплообменного аппарата, температуру холодной и горячей воды, и подключать второй контур ГВС как без циркуляции, так и с циркуляцией.

При расчете с циркуляцией нужно дополнительно задать расчетный расход на циркуляцию, как долю в процентах от расчетного расхода на ГВС и расчетную температуру воды в циркуляционном контуре на выходе из потребителя.

Расчетный расход сетевой воды при работе с циркуляцией для того же теплообменного аппарата будет отличаться от расчетного расхода при работе без циркуляционной линии.

Например, аппарат был рассчитан на следующие параметры:

Q = Qrв = 0.1 Гкал/час, T11 = 70 °C, T12 = 30 °C, Txв = T21 = 5 °C, Trв = T22 = 60 °C

Тогда без циркуляции G1 = 1000*Q/(T11-T12) = 2.5 т/час, Gгвс = G2 = 1000*Q/(T11-T12) = 1.82 т/час

Если циркуляционный расход равен 50% от расхода на ГВС и температура в циркуляционной линии ${\rm Tu}=45~^{\circ}{\rm C}$

Gu = 0.5*Gгвc = 0.91т/час

Потери тепла на циркуляцию Qu = Gu*(Тгв-Тц) = 0.014 Гкал/час

Расход второго контура ТО будет суммой расхода на ГВС и на циркуляцию

G2 = Gц + G гвс = 2.73

Температура на входе второго контура ТО будет равна температуре смеси циркуляционной воды и подпитки холодной вводы.

$T21 = (G \Gamma B c^* T x B + G u^* T u)/G2 = 18.3$

Q = Qгв + Qц = 0.114 Гкал/час

G1 = 3.29 т/час

T

T.е. сетевой расход для того же TO при таких параметрах циркуляции увеличился на 32%

Примечание

В этом случае значения:

T11_i_niz - Исп. температура на входе 1 контура I ступени = 70,

T12_i_niz - Исп. температура на выходе 1 контура I ступени = 30, a T21_i_niz - Исп. температура на входе 2 контура I ступени и T22_i_niz - Исп. температура на выходе 2 контура I ступени будут браться по значениям холодной и горячей воды, заданным на источнике.

Примечание

Желательно, чтобы потери напора соответствовали потерям напора при испытательном расходе первого контура. Рекомендуется все потери первого контура ТО при испытательном расходе целиком задавать в поле *Hsec_niz* – Потери напора в одной секции I ступени, а в поля *Nsec_niz* – Кол-во секции ТО на ГВС I ступень и Ngr_niz – Кол-во параллел групп ТО на ГВС I ступ. заносить единицу.

16.4. Дополнительные исходные данные для расчета с учетом тепловых потерь

Для проведения расчета с учетом тепловых потерь необходимо занести дополнительные данные:

По источнику тепловой сети:

- *Tsg_pod*, *Среднегодовая температура в под. тр-де*, °С. Задается величина среднегодовой температуры в подающем трубопроводе;
- *Tsg_obr*, *Среднегодовая температура в обр. тр-де*, °С. Задается величина среднегодовой температуры в обратном трубопроводе;
- *Tsg_grunt*, *Среднегодовая температура грунта*, °С. Задается величина среднегодовой температуры грунта;
- *Tsg_nv*, *Среднегодовая температура наружного воздуха*, °С. Задается величина среднегодовой температуры наружного воздуха;

- *Tsg_podval, Среднегодовая температура воздуха в подвалах,* °*С.* Задается величина среднегодовой температуры воздуха в подвалах;
- *Tgrunt*, *Текущая температура грунта*, °С. Задается величина текущей температуры грунта;
- *Tpodval*, *Текущая* температура воздуха в подвалах, °С. Задается величина текущей температуры воздуха в подвалах;
- Period, Продолжительность работы системы теплоснабжения -Задается число часов работы системы теплоснабжения в год, для этого встать на соответствующую строку и нажать на кнопку , в выпавшем меню выбрать необходимое значение: менее 5000 часов работы системы теплоснабжения в год или более 5000 часов.

Примечание

В соответствии с СНиП 41-02-2003 «Тепловые сети» при определении тепловых потерь трубопроводами расчетная температура теплоносителя принимается для подающих теплопроводов водяных тепловых сетей:

- при переменной температуре сетевой воды и качественном регулировании среднегодовая температура теплоносителя 110 °C при температурном графике регулирования 180-70 °C, 90 °C, при 150-70 °C, 65 °C при 130-70 °C и 55 °C при 95-70 °C;
- Среднегодовая температура для обратных теплопроводов водяных тепловых сетей принимается 50 °C;
- При размещении теплопроводов в подвалах жилых зданий температура внутреннего воздуха принимается равной 20 °C, а температура на поверхности конструкции теплопроводов не выше 45 °C.

16.4.1. Расчет по нормированным потерям

По участкам тепловой сети:

- Proklad, Вид прокладки тепловой сети Задается вид прокладки участка трубопровода, для этого требуется выбрать соответствующую строку, нажать кнопку и в открывшемся меню выбрать требуемый пункт: надземная прокладка, канальная прокладка, бесканальная прокладка, подвальная прокладка;
- Norma, Нормативные потери в тепловой сети Пользователем указывается норматив на основе которого будет производиться расчет, для этого требуется выбрать соответствующую строку, нажать кнопку и в открывшемся меню выбрать требуемый пункт: нормируемые потери определяются по нормам 1959 года, нормируемые потери определяются по нормам 1988 года, нормируемые потери определяются по нормам 1997 года, нормируемые потери определяются по нормам 2003 года;
- Кроргаv, Поправочный коэфф. на нормы тепловых потерь для подающего тр-да - Задается для подающего трубопровода пользователем по результатам температурных испытаний. Если температурные испытания не

- проводились, поправочный коэффициент на нормы тепловых потерь принимается равным 1.0;
- Крор_obr, Поправочный коэффициент на нормы тепловых потерь для обратного. тр-да - Задается для обратного трубопровода пользователем по результатам температурных испытаний. Если температурные испытания не проводились, поправочный коэффициент на нормы тепловых потерь принимается равным 1.0;
- Q1_pod, Дополнительные потери тепла под. тр-да, ккал-Наряду с тепловыми потерями через изоляцию, имеется возможность задавать дополнительные фиксированные тепловые потери подающего трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников;
- Q1_obr, Дополнительные потери тепла обр. тр-да, ккал-Наряду с тепловыми потерями через изоляцию, имеется возможность задавать дополнительные фиксированные тепловые потери обратного трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников.

16.4.2. Расчет тепловых потерь с учетом фактической изоляции

Для проведения расчета с тепловых потерь по фактическому состоянию изоляции необходимо занести следующие данные:

По участкам тепловой сети:

- Proklad, Вид прокладки тепловой сети Задается число вид прокладки участка тепловой сети, для этого для этого требуется выбрать соответствующую строку, нажать кнопку и в открывшемся меню выбрать требуемый пункт: надземная прокладка, канальная прокладка, бесканальная прокладка, подвальная прокладка;
- Izol_pod, Теплоизоляционный материал под. тр-да (1 39) Задается теплоизоляционный материал подающего трубопровода, для этого требуется выбрать соответствующую строку, нажать кнопку и в открывшемся меню выбрать требуемый пункт. Описание теплоизоляционных материалов приведено в <u>Приложении 3</u>;
- Izol_obr, Теплоизоляционный материал обр. тр-да (1 39) -Задается теплоизоляционный материал обратного трубопровода, для этого требуется выбрать соответствующую строку, нажать кнопку чи в открывшемся меню выбрать требуемый пункт. Описание теплоизоляционных материалов приведено в <u>Приложении 3.</u>;
- Wizol_pod, Толщина изоляции подающего тр-да, м-Задается толщина изоляции подающего трубопровода, например 0.07, 0.1 м;
- Wizol_obr, Толщина изоляции обратного тр-да, м-Задается толщина изоляции обратного трубопровода, например 0.07, 0.1 м;

- Тех_род, Техническое состояние изоляции под.тр-да (1-8) -Задается только в том случае, если тепловые потери в трубопроводах тепловой сети определяются расчетным путем, а не по удельным нормативным показателям. При выполнении расчетов принимаются средние значения поправок к коэффициентам теплопроводности теплоизоляционных материалов приведенных в <u>Приложении 3</u>;
- *Tex_obr*, *Texническое состояние изоляции обр.тр-да (1-8)* Задается только в том случае, если тепловые потери в трубопроводах тепловой сети определяются расчетным путем, а не по удельным нормативным показателям. При выполнении расчетов принимаются средние значения поправок к коэффициентам теплопроводности теплоизоляционных материалов приведенных в <u>Приложении 3</u>;
- Q1_pod, Дополнительные потери тепла под. тр-да, ккал-Наряду с тепловыми потерями через изоляцию, имеется возможность задавать дополнительные фиксированные тепловые потери подающего трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников;
- Q1_obr, Дополнительные потери тепла обр. тр-да, ккал-Наряду с тепловыми потерями через изоляцию, имеется возможность задавать дополнительные фиксированные тепловые потери обратного трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников.

При подземной прокладке трубопровода:

- *S*, *Расстояние между осями трубопроводов*, м. Задается расстояние между осью подающего и осью обратного трубопроводов в метрах;
- *Hzal*, *Глубина заложения трубопровода*, м. Задается расстояние от оси трубопровода до поверхности земли, например 0.8, 1.0, 1.2 м. и т.д;
- Grunt, Вид грунта Задается вид грунта в котором проложен участок трубопровода, для этого требуется выбрать соответствующую строку, нажать кнопку
 и в открывшемся меню выбрать требуемый пункт.

N п.п.	Вид грунта	Коэффи г	циент теплопр рунтов Вт/(м *	оводности [•] С)		
		сухого	влажного	водонасыщенного		
		1	2	3		
1	Песок, супесь	1,10	1,92	2,44		
2	Глина, суглинок	1,74	2,56	2,67		
3	Гравий, щебень	2,03	2,73	3,37		

При канальной прокладке дополнительно:

• *Hkanal*, *Bысота канала*, *м*. - Задается пользователем в зависимости от марки канала и условного диаметра труб в соответствии с таблицей приложения Приложение Е, Основные типы сборных железобетонных каналов для тепловой сети, например для канала марки КЛ 90-45 при условном диаметре подающей и обратной трубы 0.1 м. высота канала 0.63 м;

Wkanal, Ширина канала, м. - Задается пользователем в зависимости от марки канала и условного диаметра труб в соответствии с таблицей Приложения Приложение Е, Основные типы сборных железобетонных каналов для тепловой сети, например для канала марки КЛ 90-45 при условном диаметре подающей и обратной трубы 0.1 м. ширина каналы 1.15 м.

16.5. Исходные данные для выполнения конструкторского расчета

Перед тем как приступить к конструкторскому расчету, сначала нужно занести следующую информацию по участкам и потребителям тепловой сети.

16.5.1. По потребителям

Независимо от того как будет проводиться расчет следует занести:

• *Hcon_ras*, *Pacnonaraeмый* напор на вводе (констр), м-Задается величина располагаемого напора на вводе у потребителя, для конструкторского расчета.

Расчет может проводиться по известным расчётным расходам или по расчетным нагрузкам, подробнее об этом Конструкторский расчет

- Для выполнения расчета по известным расчетным расходам:
 - Gcon_so, Расчетный расход на СО (констр), т/ч-Задается расчетный расход для конструкторского расчета на систему отопления;
 - Gcon_sv, Расчетный расход на СВ (констр), т/ч-Задается расчетный расход для конструкторского расчета на систему вентиляции;
 - Gcon_gv, Расчетный расход на ГВС (констр), т/ч-Задается расчетный расход для конструкторского расчета на систему горячего водоснабжения.
- Для выполнения расчета по известным расчетным нагрузкам:
 - Qo_r, Расчетная нагрузка на отопление, Гкал/ч. Задается расчетная нагрузка на отопление в соответствии с расчетными данными в Гкал/ч. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений «Настройка используемых единиц измерения»;
 - Qsv_r, Расчетная нагрузка на вентиляцию, Гкал/ч. -Задается пользователем по проектным данным. При отсутствии проектных данных расчетные тепловые нагрузки на вентиляцию могут быть определены по наружному объему здания или поверхности нагрева теплопотребляющего оборудования. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений см. в разделе см. "Настройка используемых единиц измерения";
 - Qgv_sred, Расчетная средняя нагрузка на ГВС, Гкал/ч-Задается пользователем по проектным данным в Гкал/ч. При отсутствии проектных

данных расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений см. в разделе *см. "Настройка используемых единиц измерения"*;

16.5.2. По участкам

Независимо от того как будет проводиться расчет следует занести:

- *L*, *Длина участка*, *м* задается длина участка трубопровода в плане с учетом длины П-образных компенсаторов. Поле Длина участка можно заполнить автоматически для всех участков тепловой сети. Подробнее «Автоматическое занесение длины с карты»;
- *Ke_con_pod*, Шероховатость подающего трубопровода (конструкторский), мм Задается шероховатость подающего трубопровода для конструкторского расчета;
- *Ke_con_obr*, Шероховатость обратного трубопровода (конструкторский), мм Задается шероховатость обратного трубопровода для конструкторского расчета;
- *Кz_pod*, Коэффициент местного сопротивления подающего трубопровода -Задается коэффициент местного сопротивления для подающего трубопровода, например 1.1 или 1.2. В этом случае действительная длина участка трубопровода будет увеличена на 10 или 20 % соответственно. Если коэффициент местного сопротивления для подающего трубопровода будет задан равным 1.0, то действительная длина подающего трубопровода увеличена не будет;
- Kz_obr, Коэффициент местного сопротивления обратного трубопровода Задается коэффициент местного сопротивления для обратного трубопровода, например 1.1 или 1.2. В этом случае действительная длина участка трубопровода будет увеличена на 10 или 20 % соответственно. Если коэффициент местного сопротивления для обратного трубопровода будет задан равным 1.0, то действительная длина обратного трубопровода увеличена не будет.

Примечание

Если местные сопротивления неизвестны, то в этом случае пользователь может увеличить действительную длину трубопровода добавлением эквивалентной длины, характеризующей потери в местных сопротивлениях. Для этого следует задать для полей Коэффициент местного сопротивления под. тр-да. и Коэффициент местного сопротивления под. тр-да. значения от 1.05 до 1.2

Если вид местных сопротивлений и их количество известны, их следует указать с помощью справочника по местным сопротивлениям. Этот справочник заносится в поле *Местные* сопротивления под. (обр.) тp-да.

• Zpod_str, Местные сопротивления под. тр-да – Задаются местные сопротивления, установленные на подающем трубопроводе. Как работать со справочником по местным сопротивлениям см. в разделе «Справочник по местным сопротивлениям». Сумма всех сопротивлений, автоматически записывается в поле Сумма коэф. местных сопротивлений под. тр-да. Значения коэффициентов местных

сопротивлений приведены в таблице приложения Приложение D, Коэффициенты местных сопротивлений на участке трубопровода;

Zobr_str, Местные сопротивления обр. тр-да – Задаются местные сопротивления, установленные на обратном трубопроводе. Как работать со справочником по местным сопротивлениям см. в разделе «Справочник по местным сопротивлениям». Сумма всех сопротивлений, автоматически записывается в поле Сумма коэф. местных сопротивлений обр. тр-да. Значения коэффициентов местных сопротивлений приведены в таблице приложения Приложение D, Коэффициенты местных сопротивлений на участке трубопровода.

Как работать со справочником по местным сопротивлениям см. в разделе «Справочник по местным сопротивлениям». Значения коэффициентов местных сопротивлений приведены в таблице приложения Приложение D, Коэффициенты местных сопротивлений на участке трубопровода. Сумма всех сопротивлений, автоматически записывается в поле Сумма коэф. местных сопротивлений (под) обр. тр-да.

Примечание

Указывая местные сопротивления, установленные на сети следует, чтобы значения полей Коэффициент местного сопротивления подающего трубопровода и Коэффициент местного сопротивления обратного трубопровода были равными 1.

В зависимости от того, по какому параметру будет делаться расчет, следует занести оптимальные скорости или удельные линейные потери:

- Для выполнения расчета по оптимальной скорости:
 - Vopt_pod , Оптимальная скорость в подающем (конструкторский), м/с-Задается оптимальная скорость для подающего трубопровода данного участка;
 - Vopt_obr, Оптимальная скорость в обратном (конструкторский), м/с-Задается оптимальная скорость для обратного трубопровода данного участка.
- Для выполнения расчета по удельным линейным потерям:
 - dHud_con_pod, Удельные линейные потери подающего (конструкторский), мм/м- задаются удельные линейные потери для подающего трубопровода;
 - dHud_con_obr, Удельные линейные потери обратного (конструкторский), мм/м— задаются удельные линейные потери для обратного трубопровода.

16.6. Исходные данные для построения температурного графика

Исходные данные по объектам сети для расчета температурного графика должны быть внесены такие же, как и для поверочного расчета

16.7. Исходные данные для расчета нормативных потерь тепла за год

Целью данного расчета является определение тепловых потерь через изоляцию трубопроводов в течение года.

Для учета работы трубопроводов в различные периоды (летний, зимний) для каждого участка тепловой сети в базе данных можно указать следующие поля:

- Use_pod, Период работы подающего тр-да Выбирается пользователем из списка период работы трубопровода
- Use_obr, Период работы обратного тр-да Выбирается пользователем из списка период работы трубопровода.

🔊 Примечание

0 (Пусто) - Весь год.

1 - Зимний период.

2 - Летний период.

Для просмотра результатов расчета по различным владельцам (балансодержателям) для каждого участка тепловой сети в базе данных можно указать следующее поле:

• Owner, Балансодержатель - Указывается пользователем имя владельца (балансодержателя) участка тепловой сети, например МУП Теплоэнерго.

Также перед расчетом следует проверить данные по температурному графику и среднегодовые температуры

- 1. Среднегодовая температура наружного воздуха.
- 2. Среднегодовая температура воды в подающем и обратном трубопроводе.
- 3. Среднегодовая температура грунта.
- 4. Среднегодовая температура в подвальных помещениях.

Графи	<	-3.	202002 - 11	Средне	годовые	2	10
Тнв	-34.0	Tco	95.0	Тнв	-30.0	Тгрунт	-8.0
Тпод	110.0	Тев	20.0	Тлод	55.0	Тподе	10.0
Тобр	70.0			Тобр	50.0	-	

Рисунок 16.2. Исходные данные по среднегодовым температурам

Примечание

Среднегодовые температуры и температуры графика берутся автоматически из базы данных объектов (источника или ЦТП).
Дополнительно следует занести среднемесячные температуры за каждый месяц:

- 1. Продолжительность отопительного и неотопительного (летнего) периода в течение каждого месяца.
- 2. Среднемесячная температура наружного воздуха
- 3. Среднемесячная температура грунта.
- 4. Среднемесячная температура теплоносителя в подающем и обратном трубопроводах.
- 5. Средняя за месяц температура холодной воды.

Месяц	П.,	Про	Тнв	Trp	Тпод	Тобр	Тхв
Январь	0	744	-8.0	-3.0	86.2	58.2	5.0
	Л	0	-8.0	-3.0	60.0	0.0	0.0

Рисунок 16.3. Исходные данные по средним температурам за месяц

Глава 17. Отображение семантической информации на карте

Для удобства анализа результатов расчета можно выводить атрибутивные данные по объектам на карту. Одновременно на карту можно выводить надписи по всем объектам, для каждого типа по своему шаблону. Надпись может быть по-разному расположена относительно объекта, сориентирована под произвольным углом и иметь различные стили.

В надписи по одному объекту могут участвовать значения разных его полей, которые можно выводить в одну или несколько строк, сопровождая каждое из полей своим шрифтом, цветом, префиксом и постфиксом. Можно выводить надписи по всем объектам, для каждого типа по своему варианту. Также имеется возможность одновременно подключать к каждому типу объектов слоя сразу несколько вариантов надписей.

Подробнее о работе в редакторе можно узнать в справочном пособии по работе с ГИС Zulu в разделе «Вывод семантических данных на карту».

Глава 18. Автоматическое занесение исходных данных

18.1. Автоматическое занесение длины с карты

При нанесении тепловой сети на карту в масштабе, поле Длина участка можно заполнить автоматически для всех участков тепловой сети. Длины участков можно определять как с учетом, так и без учета геодезических отметок начального и конечного узла. При запуске операции автоматического определения длин участков пользователю будет предложено стоит ли учитывать геодезические отметки.

Данная операция выполняется только для тех участков, у которых не введена длина. Если же в поле Длина участка стоит какое-либо число, то никаких изменений для этого участка не произойдет. Т.е. введенные значения (или первоначально считанные с карты) перезаписываться не будут.

Для занесения длины с карты:

1.

Выберите команду главного меню Задачи|ZuluThermo или нажмите кнопку панели инструментов. На экране появится окно теплогидравлических расчетов (см. *рис. "Окно теплогидравлических расчетов ZuluThermo"*).

ZuluThermo	_ • ×
	Слой)
Наладка Поверка Температурный график	Конструкторский Сервис
 С учетом утечек. С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета 	
Раскраска 🤇	iet>
Расчет Настройки Справка	Закрыть

Рисунок 18.1. Окно теплогидравлических расчетов ZuluThermo

- 2. Нажмите кнопку Слой...и выберите из списка слой тепловой сети;
- 3. Перейдите на вкладку Сервис. Появится окно, показанное на рис. "Вкладка Сервис"

Система централизованного те Наладка Поверка Темпера Длины участков с карты Отметки высот с карты Начала и концы участков	плоснабжени Слой. атурный график Конструкторский Сервис Создать новую сеть Обновить структуры таблиц Единицы измерения Расчет тепловых потерь
Расчет Настройки	Справка Закрыть

Рисунок 18.2. Вкладка Сервис

- 5. Нажмите кнопку Длины участков с карты;
- 6. В открывшемся окне выберите, следует ли учитывать геодезические отметки объектов тепловой сети. Программа считает длины участков с нанесенной на карту расчетной схемы в соответствии с масштабом и запишет данные в базу данных по участкам в поле Длина участка.

🚹 Важно

4.

Данная операция выполняется только для тех участков, у которых не введена длина.

18.2. Автоматическое занесение начала и конца участков

Если заданы наименования узловых объектов сети (камер, потребителей, насосных станций и др.), то для участков тепловой сети можно автоматически заполнить поля Наименование начала участка и Наименование конца участка. Имя начального узла будет наименованием начала участка, а имя конечного узла – наименование конца участка.

Для проведения данной операции:

1.

Выберите команду главного меню Задачи|ZuluThermo или нажмите кнопку панели инструментов. На экране появится окно теплогидравлических расчетов (*puc. "Окно теплогидравлических расчетов ZuluThermo"*).

ZuluThermo				_ • ×
				Слой
Наладка Поверка Температ ✓ С учетом утечек ✓ С учетом тепловых потерь ● По норм. потерям ● По изоляции ✓ Сопла и шайбы из наладки ■ Диаметры из конструкторского расчета	урный график	Конструкторский	Сервис	
	Раскраска 🤇 н	et>		•
Расчет Настройки	Справка	Закрыты		

Рисунок 18.3. Окно теплогидравлических расчетов ZuluThermo

- 2. Выберите слой тепловой сети из списка, нажав кнопку Слой...;
- 3. Перейдите на вкладку Сервис. Появится окно, показанное на рис. "Вкладка".

ZuluThermo			
Система централизованного теплоснабжени Слой			
Наладка Поверка Температурный график Конструкторский Сервис			
Длины участков с карты Создать новую сеть			
Отметки высот с карты Обновить структуры таблиц			
Начала и концы участков Единицы измерения			
Расчет тепловых потерь			
Расчет Настройки Справка Закрыть			

Рисунок 18.4. Вкладка «Сервис»

4. Нажмите кнопку Начала и концы участков. Программа автоматически заполнит поля Наименование начала участка и Наименование конца участка для всех участков.

Важно

При повторном использовании данной операции, происходит перезапись полей Наименование начала участка и Наименование конца участка.

18.3. Автоматическое занесение геодезических отметок объектов сети со слоя рельефа

При наличии слоя рельефа, геодезические отметки всех объектов тепловой сети можно автоматически считать с карты. Для этого:

1. Выберите команду главного меню Задачи|ZuluThermo или нажмите кнопку панели инструментов. На экране появится окно теплогидравлических расчетов (*рис. "Окно теплогидравлических расчетов ZuluThermo"*).

ZuluThermo
Слой
Наладка Поверка Температурный график Конструкторский Сервис
 С учетом утечек. С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета
Раскраска (нет) 🗸
Расчет Настройки Справка Закрыть

Рисунок 18.5. Окно теплогидравлических расчетов ZuluThermo

- 2. Нажмите кнопку Слой...и выберите слой тепловой сети;
- 3. Перейдите на вкладку Сервис. Появится окно, показанное на рис. "Вкладка".

ZuluThermo		_ • ×
Система централизованного тепло	оснабжени	Слой
Наладка Поверка Температур	рный график Конструкторский	Сервис
Длины участков с карты Отметки высот с карты Начала и концы участков	Создать новую сеть Обновить структуры таблиц Единицы измерения Расчет тепловых потерь	
Расчет Настройки	Справка Закрыть	

Рисунок 18.6. Вкладка «Сервис»

4. Нажмите кнопку Отметки высот с карты. В результате автоматически заполнится поле геодезическая отметка для всех объектов сети.

Глава 19. Раскраска сети

Информация, внесенная в семантические базы данных, а также полученная в результате расчетов, может использоваться для тематической раскраски сети (изменения внешнего вида объектов). Раскраска позволяет проанализировать результаты расчета, а также наглядно выделить определенные объекты на карте.

Раскраску сети можно произвести двумя способами:

- 1. Окраска с помощью встроенных фильтров позволяет окрасить тепловую сеть с помощью встроенных тематических фильтров после проведения наладочного или поверочного расчета в зависимости от:
 - температуры теплоносителя в подающем трубопроводе;
 - температуры теплоносителя в обратном трубопроводе;
 - скорости движения воды в трубопроводе;
 - влияния источников на сеть (если количество источников больше 1);
 - времени прохождения теплоносителя от источника до узла;
 - величины напора в подающем трубопроводе;
 - величины располагаемого напора;
 - величины удельных линейных потерь напора.
- Раскраска с помощью собственного фильтра позволяет окрасить любые объекты сети с помощью самостоятельно созданного нового тематического фильтра. Например, задать цвет всем трубопроводам с подземной бесканальной прокладкой - желтый, подземной канальной прокладкой - красный, подвальной прокладкой голубой, а также задать стиль и толщину линии.

С помощью тематической окраски можно:

- Выделить цветом магистральные и квартальные сети;
- Выделить цветом тепловые сети в зависимости от их владельца;
- Выделить цветом участки с разным видом прокладки или типом изоляции.

Смотрите также:

- Запуск раскраски с помощью встроенных фильтров (Раздел 18.1.1, «Запуск раскраски»);
- настройки встроенных фильтров (Раздел 7.6, «Настройка раскраски»);
- создание нового тематического файла (Раздел 18.2.1, «Создание нового тематического файла»);
- редактирование тематического файла (Раздел 18.2.2, «Редактирование тематического файла»);

- подключение\отключение тематической окраски (Раздел 18.2.3, «Подключение тематической окраски»);
- обновление тематической окраски (Раздел 18.2.4, «Обновление тематической окраски»);
- пример создания тематического фильтра (Раздел 18.2.5, «Пример создания тематического фильтра»).

19.1. Раскраска с помощью встроенных фильтров

19.1.1. Запуск раскраски

Для того чтобы раскрасить сеть нужно:

1. После успешного проведения расчета, в окне Теплогидравлические расчеты в строке Раскраска нажать кнопку ▼ В выпавшем меню выбрать параметр, в зависимости от которого нужно произвести раскраску сети. (см. *рис. "Раскраска с помощью встроенных фильтров"*)

ZuluThermo					_ + ×
Система централизованного тепл	поснабжени				Слой
Наладка Поверка Температ	урный график	Конструкторский	Сервис	Danfoss	
 ✓ С учетом ГВС ✓ С учетом утечек С учетом тепловых потерь () По норм. потерям () По изоляции Гашение избългочного напора () Дроссельными шайбами () Соплом э леватора 	⊡-⊻ Cucrer	на централизованно зерная	го теплосі	набжени	
	Раскраска 🕢	iet>			•
Расчет Настройки	Справка Те	іет> «мпература в подаюі «мпература в обратн	щем ЮМ		Í
	Cr Br Hi Hi Pi Yy	сточники сорости эемя апор в подающем апор в обратном асп. напор цельные потери			

Рисунок 19.1. Раскраска с помощью встроенных фильтров

2. После выбора параметра левой клавишей мыши, сеть окрасится в соответствии с заданными настройками (см. *рис. "Окраска сети с помощью встроенных фильтров"*.) (Подробнее Раздел 18.1.2, «Настройки раскраски»).

! Важно

Окрасить сеть с помощью встроенных фильтров можно только после успешного проведения наладочного и поверочного расчетов.

Рисунок 19.2. Окраска сети с помощью встроенных фильтров

19.1.2. Настройки раскраски

Для того чтобы настроить тематический фильтр раскраски сети нужно:

- 1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку Спанели инструментов;
- 2. Нажать кнопку Слой...и выбрать слой рассчитываемой тепловой сети;
- 3. Нажать кнопку Настройки;
- 4. Выбрать закладку Раскраска, (см. рис. "Настройки раскраски");
- 5. Выбрать тип настраиваемого параметра, нажав на соответствующую кнопку, например Температура трубопровода.

Параметры гидравлического расчета
Тепловые потери Потери напора Теплоноситель Утечки Протокол расчета Раскраска ГВС Исходные данные Наsp
Температура подающего трубопровода
Температура обратного трубопровода
Скорость движения теплоносителя
Время движения воды от источника
Напор в подающем трубопроводе
Напор в обратном трубопроводе
Располагаемый напор
Удельные потери
ОК Отмена Применить Справка

Рисунок 19.3. Настройки раскраски

6. В появившемся окне задать значения параметров T2, (T1 заполняется автоматически) и указать соответствующий этому диапазону значений цвет окраски, (см. *рис. "Настройка цветов для окраски"*).

lвета			23
T1, °C	T2, °C 100.00	Цвет	Добавить
100.00	110.00		Вставить
110.00	120.00		
120.00	130.00		Удалить
130.00	140.00		
140.00	150.00		
			15
			ОК
			Отмена

Рисунок 19.4. Настройка цветов для окраски

Кнопка Добавить служит для добавления пункта в конец списка. Для того чтобы вставить строчку перед определенным полем, необходимо выделить это поле, и нажать кнопку Вставить, перед выделенным полем появится новая строка;

7. Нажать кнопку ОКдля сохранения настроек.

19.2. Раскраска с помощью собственного фильтра

19.2.1. Создание нового тематического файла

Программа предусматривает возможность создания своего собственного фильтра по окраске объектов сети в зависимости от любого параметра семантической базы данных этих объектов. Создать, записать и отредактировать тематический фильтр можно в редакторе фильтров. Для вызова редактора следует выбрать пункт меню системы Карта/Тема/Редактор фильтра. На экране появится диалог редактора.

Зададим тематическую раскраску для участков, длина которых больше и меньше 50 метров.

Сначала необходимо создать тематический фильтр, для этого следует:

- 1. В меню Карта выбрать команду Тема|Редактор фильтра;
- 2. Нажать кнопку Слой, и в появившемся окне выбора файла указать слой тепловой сети;
- 3. В строке Шаблон ввести имя шаблона. (Например, Окраска по длине, см. *рис.* "Создание тематического фильтра");
- 4. Из выпадающего списка База выбрать базу данных Участки;

5. В строке Имя задать название первого условия. (Например, Длина меньше 50 метров).

В разделе набора условий в строке Длина участка, м ввести: <50;

Примечание

Синтаксис условий запроса аналогичен синтаксису в окне запросов по семантической базе данных.

6. Указать тип объекта, выбрав вкладку Линейные.

В разделе Линии задать цвет, стиль и толщину линий трубопровода.(см. *рис. "Создание тематического фильтра"*).

лои:	теплосеть			🔄 Слой
Јаблон:	Окраска по длине		-1 X	对 Открыты
Ісловие				
Имя:	Длина меньше 50 метров		1 из 1 🔹 🕨	Сохранить
База:	Участки	• Запрос:	Основной	
Номер и	сточника			A Reary
Наименс	вание начала участка			Deepa
Наимено	вание конца участка			> Вниз
Длина уч	астка, м	<50		
Внутренн	ний диаметр подающего трубопрово	L		Вставить
Внутренн	ний диаметр обратного трубопровод	L		Уладить
Сумма к	озф. местных сопротивлений под. т	p		
Местные	е сопротивления под.тр-да			_ 🕒 Очистить
Симма кі	азф местных сопративлений обр. т	n		· · · · · · · · · · · · · · · · · · ·
Площад	ные Линейные Символьные			
				Навидимый объект
Цвет:				перидиный обрект
Стиль:	(не менять) 🔻			Невидимая надпись
Толщи	на на экране: 2😴			
Толщин	на на экране: 2😴			
Толщин Толщин	на на экране: 2			
Толщин Толщин	на на экране: 2😴 на при печати: 2🛫			
Толщин Толщин	на на экране: 2			
Толщи Толщи	на на экране: 2😴 на при печати: 2😴			
Толщи Толщи	на на экране: 2			
Толщи Толщи	на на экране: 2			
Толщи Толщи	на на экране: 2			🕐 Справка

Рисунок 19.5. Создание тематического фильтра

7.

Для ввода следующего запроса нажать стрелку 🗈 в разделе 1 из 1 ме ;

- 8. В строке Имя задать название второго условия. (см. *рис. "Создание тематического фильтра 20е условие"*);
- 9. В строке Длина участка, м ввести: >50. (см. *рис. "Создание тематического фильтра 20е условие"*);
- 10.В разделе Линиизадать стиль, цвет и толщину трубопровода;

11.Сохранить шаблон (кнопка Сохранить).

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГТ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Слой:	теплосеть		Caoŭ
			слои
Шаблон:	Окраска по длине	- · X 🚰 o	ткрыть
Условие			охранить
Имя:	Длина больше 50 метров	2из 2 🔹 🕨	onpanino
База:	Участки 👻 Запр	ос: Основной	
Номер и	сточника	A	Beenv
Наимено	ование начала участка		DOODY
Наимено	ование конца участка	>	Вниз
Длина у	частка, м >50		Por opur
Внутрен	ний диаметр подающего трубопрово		рставить
Внутрен	ний диаметр обратного трубопровод		Удалить
Сумма к Малении и	оэф. местных сопротивлении под. тр		
Справля и	сопротивления подпряда		Очистить
Площад Цвет:	ные Линейные Символьные	П Невидимы	ый объект
Стиль:	(не менять) 🔻	🔲 Невидима	я надпис
Толщи	на на экране: 2		
Толщи	на при печати: 🛛 2 🚔		
		0	Справка

Рисунок 19.6. Создание тематического фильтра, 2-ое условие

Теперь на основе тематического фильтра создаётся тематический файл:

1. В меню Карта выбрать пункт Тема Создать.

Создание те	матиче	ской раскраски	23				
Слой: теплосеть							
Фильтр:	▼						
Тема:	-1	Окраска по длине	-				
OK		Отмена Справка 📝 Подключит	ьк карте				

- 2. В выпадающем списке Слой нажать на стрелку (-) и выбрать слой тепловой сети;
- 3. В строке Фильтр нажать стрелку **▼** и выбрать фильтр, созданный на предыдущем этапе (Окраска по сети);
- 4. В строке Тема стереть надпись <Новая> и написать пользовательское название темы, например, также Окраска по сети;
- 5. Отметить опцию Подключить к карте, нажать кнопку ОК. На экране отобразится созданная тематическая раскраска.

19.2.2. Редактирование тематического файла

Для редактирования тематической окраски надо:

1. В меню Карта выбрать команду Тема/Редактор фильтра;

- 2. Нажать на кнопку Слой, и в появившемся окне выбора файла указать слой тепловой сети;
- 3. В строке Шаблон выбрать имя шаблона, который нужно отредактировать (Например, окраска по сети);
- 4. Изменить необходимые параметры;
- 5. Нажать кнопку ОКдля сохранения изменений.

После редактирования тематического фильтра, тематический файл надо обновить. Как это сделать Раздел 18.2.3, «Подключение тематической окраски»

19.2.3. Подключение тематической окраски

Для подключения тематической окраски необходимо:

- 1. Выбрать пункт меню Карта|Тема|Подключить. Откроется окно Тематические раскраски, (*рис. "Подключение тематической раскраски"*);
- 2. Дважды щелкнуть левой кнопкой мыши по раскраске. Двойной щелчок устанавливает (снимает) галочку с раскраски. Галочка означает, что окраска будет подключена к карте;
- 3. После выбора необходимой раскраски и её подключения (отключения) нажмите кнопку ОКдля сохранения.

Рисунок 19.7. Подключение тематической раскраски

19.2.4. Обновление тематической окраски

После расчета или после изменения исходных данных необходимо окрасить сеть повторно, для этого нужно:

- 1. Выбрать пункт меню Карта Тема Подключить. Откроется окно Тематические раскраски;
- 2. Выделить раскраску левой кнопкой мыши;
- 3. Нажать кнопку Обновить;
- 4. Нажать кнопку ОКдля закрытия окна.

Рисунок 19.8. Обновление тематической окраски

19.2.5. Пример создания тематического фильтра

Создать, записать и отредактировать тематический фильтр можно в редакторе фильтров. Для вызова редактора следует выбрать пункт меню системы Карта|Тема| Редактор фильтра. На экране появится диалог редактора.

Зададим тематическую раскраску для потребителей, у которых расчетная нагрузка на отопление меньше 0.2 Гкал/ч, для этого надо следует сначала создать тематический фильтр:

- 1. В меню Карта выбрать команду Тема|Редактор фильтра;
- 2. Нажать кнопку Слойи в появившемся окне выбрать слой тепловой сети;
- 3. В строке Шаблон ввести: Нагрузка меньше 0.2;
- 4. В строке Условие задать название условия, например Нагр. меньше 0.2;
- 5. В строке База выбрать объект сети, в данном случае Потребитель;
- 6. В разделе набора условий в строке Расчетная нагрузка на отопление, Гкал/ч ввести: <0.2;
- 7. Выбрать снизу вкладку Символьные;

- Нажать Новый символи нарисовать символ в редакторе. Более подробное описание работы в графическом редакторе символов можно рассмотреть в справочном пособии по работе с ГИС Zulu в разделе Работа с векторными слоями/Редактор структуры слоя/Редактор символов;
- 9. Выбрать нарисованный символ в выпадающем списке;
- 10.В строке Размер установить значение 40.

	Пример теплово	ой сети					Caoŭ
							🕘 слои
Јаблон:	Нагрузка мены	ше 0.2			▼ U	X	🚰 Открыты
Ісловие							💭 Сохранить
Имя:	Нагр. меньше С	.2			1 из 1 🔮		
База:	Потребитель		•	Запрос:	Основной		
Адрес уз	ла ввода						К Вверх
Наименс	вание узла						
Номер и	сточника						> Вниз
Геодезич	ческая отметка, м	1				_	П. Вставить
Высотаз	здания потребите	ля, м				_	вегаритр
Homep c:	хемы подключени	ия потребител	IЯ 1977 об			_	🎽 Удалить
Расчетна	зя темп. сет. воды	и на входе в п опрежива. Пира	отрео	20.2		_	
Расчетна	ая нагрузка на ог	опление, г кал итилацию. Ги	an/u	VU.Z			🕒 Очистить
1 10.40.010		-					
Площад	ные Линейные	Символьны	e				
_			_	10	_	He	видимый объект
			Размер	40			
		•	🔲 Масш	табировать	•	He	видимая надпис
			🔲 Не чв	еличиваты	больше 1:1		
					_		
			Новь	ій символ			
			Измен	ить символ	1		
						[🕜 Справка
						ſ	D 20101-71

Рисунок 19.9. Пример создания тематического фильтра

11 .Сохранить шаблон (кнопка Сохранить);

12.Закрыть окно создания тематического фильтра (кнопка Закрыть).

Теперь следует на основе выбранного фильтра **создать тематический файл**, для этого надо:

- 1. В меню Карта выбрать пункт Тема|Создать;
- 2. В выпадающем списке Слой нажать на стрелку (•) и выбрать слой Пример тепловой сети;
- 3. В строке Фильтр нажать на стрелку (→ и выбрать файл фильтра (Нагрузка меньше 0.2);
- 4. В строке Тема стереть надпись <Новая>и ввести пользовательское название темы, например Потребители;
- 5. Включить опцию Подключить к слою.

Создание те	матической раскраски
Слой:	Пример тепловой сети 💌
Фильтр:	Нагрузка меньше 0.2 🔹 📖
Тема:	-1 Нагрузка меньше 0.2 👻
ОК	Отмена Справка 📝 Подключить к карте

Рисунок 19.10. Пример создания тематического файла

6. Нажать кнопку ОК, после чего на экране отобразится тематическая раскраска для потребителей. (*рис. "Пример подключенной тематической раскраски"*).

Рисунок 19.11. Пример подключенной тематической раскраски

Глава 20. Справочники 20.1. Справочник по трубам

Для выполнения конструкторского расчета пользователь может самостоятельно создавать различные наборы диаметров (сортаменты), по которым программа будет выбирать нужный диаметр для каждого участка. Для добавления и редактирования сортаментов используется Справочник по трубам.

По умолчанию для каждой сети всегда существует сортамент под именем Сталь, он является основным. Если при подборе диаметров необходимо для разных участков использовать разные сортаменты, то имя нужного сортамента можно задать для каждого участка персонально поле *Tubes*, *Сортамент* в базе данных по участкам (см. *рис. "Выбор материала трубопровода"*). Если это поле для участка пусто, то расчет для подбора диаметров для данного участка будет использовать основной сортамент.

Участок		_ 🗆 🔺 X
🔠 M 🔸 🕨 🗔 😨 🐼 🗸 🕒 🗹 🖆 🕌	é 🕈	£
Текущая записы Запрос База Ответ		Þ
Тепловые потери в подающем трубопроводе, ккал/ч		
Тепловые потери в обратном трубопроводе, ккал/ч		
Среднегод, уд. тепл. потери под. тр-да, ккал/ч*м		
Среднегод.уд.тепл.потери обр.тр-да, ккал/ч*м		
Норм.эксп.тепл.потери под.тр-да, ккал/час*м2*С		
Норм.эксп.тепл.потери обр.тр-да, ккал/час*м2*С		
Температура в начале участка под.тр-да, °С		
Температура в конце участка под.тр-да,*С		
Температура в начале участка обр.тр-да, °С		
Температура в конце участка обр.тр-да,*С		
Диаметр подающего тр-да (конструкторский), м		
Диаметр обратного тр-да (конструкторский), м		
Шероховатость под. тр-да (конструкторский), мм		
Шероховатость обр. тр-да (конструкторский), мм		
Оптимальная скорость в подающем (конструкторский), м/с		
Оптимальная скорость в обратном (конструкторский), м/с		
Удельные линейные потери подающего (конструкторский), мм/м		E
Удельные линейные потери обратного (конструкторский), мм/м		
Сортамент	Чугун	
		- 5

Рисунок 20.1. Выбор материала трубопровода

В последующих подразделах описываются операции по работе со справочником:

- Открытие справочника по трубам (Раздел 19.1.1, «Открытие справочника по трубам»);
- выбор материала трубопровода (Раздел 19.1.2, «Выбор материала трубопровода»);
- добавление диаметра к существующему материалу (Раздел 19.1.3, «Добавление нового диаметра к существующему материалу»);
- удаление диаметра (Раздел 19.1.4, «Удаление диаметра»);
- добавление нового материала в справочник (Раздел 19.1.5, «Добавление нового материала в справочник»);

• удаление материала из справочника (Раздел 19.1.6, «Удаление материала из справочника»).

20.1.1. Открытие справочника по трубам

Открыть справочник можно двумя способами.

Первый способ:

1.

. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку ана панели инструментов;

- 2. Перейти на вкладку Конструкторский;
- 3. Нажать кнопку Слой...и выбрать слой тепловой сети из списка;
- 4. На панели ZuluThermo нажать кнопку (см. рис. "Открытие справочника по трубам").

IuluThermo _ A X
Пример тепловой сети Слой
Наладка Поверка Температурный график Конструкторский Сервис
Участок подключения 1 Image: Characterization of the control of
 По скоростям t горячей воды, C По удельным линейным потерям t холодной воды, C
Минимальный диаметр, м 0.032
Расчет Настройки Справка Закрыть

Рисунок 20.2. Открытие справочника по трубам

Откроется окно справочника по трубам (Сортамент), в котором указаны диаметры трубопроводов в зависимости от их материала. (см. *рис. "Окно "*)

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Сталь		
Внутренний диаметр, мм	_	Новый набор
70		Удадить набог
80		
100		Изменить имя
125		
150		Чазанть
175		одалита
200		Добавить
250	=	
300		Вставить
350		
400		
500	_	
600	- 11	
700		
800	_	
900		
1000	_	
1200	-	

Рисунок 20.3. Окно «Сортамент»

Второй способ:

- 1. Открыть окно семантической информации по конкретному участку (3),;
- 2. Установить курсор с правой стороны от строки Сортамент (см. *рис. "Открытие справочника по трубам"*);.

Участки	_ 🗆 🔺 X
🔠 M 🔸 🕨 🔁 🖬 📣 🗸 🕒 🖄 🖆 🔛	🗳 🕌 🔮
Текущая запись Запрос База Ответ	۱.
Норм.эксп.тепл.потери под.тр-да, ккал/час*м2*С	A
Норм.эксп.тепл.потери обр.тр-да, ккал/час*м2*С	
Температура в начале участка под.тр-да,°С	
Температура в конце участка под.тр-да,°С	
Температура в начале участка обр.тр-да,°С	
Температура в конце участка обр.тр-да, °С	
Диаметр подающего тр-да (конструкторский), м	
Диаметр обратного тр-да (конструкторский), м	
Шероховатость под. тр-да (конструкторский), мм	
Шероховатость обр. тр-да (конструкторский), мм	
Оптимальная скорость в подающем (конструкторский), м/с	
Оптимальная скорость в обратном (конструкторский), м/с	
Удельные линейные потери подающего (конструкторский), мм/м	
Удельные линейные потери обратного (конструкторский), мм/м	E
Сортамент	
	\J+

Рисунок 20.4. Открытие справочника по трубам

3. Нажать кнопку Откроется окно справочника по трубам (Сортамент).

20.1.2. Выбор материала трубопровода

Для того чтобы выбрать материал из справочника по трубам надо:

- Открыть окно семантической информации по участку, на котором надо выбрать материал (³);
- 2. Установить курсор с правой стороны от строки Сортамент.

Участки	_ 🗆 🔺 X
🔠 M 🔸 🕨 🔁 🖬 📣 🗸 🕒 🖆 🖆 🔡 I	🗳 🕌 🔮
Текущая запись Запрос База Ответ	۱.
Норм.эксп.тепл.потери под.тр-да, ккал/час*м2*С	A
Норм.эксп.тепл.потери обр.тр-да, ккал/час*м2*С	
Температура в начале участка под.тр-да,*С	
Температура в конце участка под.тр-да,*С	
Температура в начале участка обр.тр-да,°С	
Температура в конце участка обр.тр-да,°С	
Диаметр подающего тр-да (конструкторский), м	
Диаметр обратного тр-да (конструкторский), м	
Шероховатость под. тр-да (конструкторский), мм	
Шероховатость обр. тр-да (конструкторский), мм	
Оптимальная скорость в подающем (конструкторский), м/с	
Оптимальная скорость в обратном (конструкторский), м/с	
Удельные линейные потери подающего (конструкторский), мм/м	
Удельные линейные потери обратного (конструкторский), мм/м	E
Сортамент	
	\} +

Рисунок 20.5. Окно семантической информации по участку

- 3. Нажать кнопку ...;
- 4. В появившемся окне Сортаментвыбрать необходимый материал, или добавить новый;
- 5. Нажать кнопку Сохранить.

20.1.3. Добавление нового диаметра к существующему материалу

Если в справочник по диаметрам к существующему материалу нужно добавить новый диаметр, то в этом случае следует:

- 1. Открыть справочник по трубам;
- 2. Выбрать материал в списке. При необходимости добавить новый;
- 3. Нажать кнопку Добавить для добавления строки в конец списка. Для добавления в определенном месте списка следует встать на определенную строку и нажать кнопку Вставить. Перед выделенной строкой добавится новая строка;
- 4. Ввести внутренний диаметр;
- 5. После ввода всех диаметров нажать кнопку Вставить (см. *рис. "Добавления диаметра к существующему набору"*).

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Сталь		•
Внутренний диаметр, мм	•	Новый набор
70 80		
100	- 11	эдалить наоор
125		Изменить имя
150		
175		Царанть
200		Здалить
225]	Добавить
300	Ξ	Вставить
350		
400		
500		
600		
700		
800		
900		
1000		
1200	-	
1400	×.	

Рисунок 20.6. Добавление диаметра к существующему набору

6. После сохранения изменений нажать кнопку ОК.

20.1.4. Удаление диаметра

Чтобы удалить диаметр из справочника надо:

- 1. Выделить левой кнопкой мыши строку, которую необходимо удалить;
- 2. Нажать кнопку Удалить;
- 3. Нажать кнопку Сохранить. После сохранения изменений нажать кнопку ОК.

20.1.5. Добавление нового материала в справочник

В справочник по диаметрам трубопроводов можно добавлять новые материалы. Указание материала необходимо для того, чтобы при проведении конструкторского расчета программа «знала» какой набор диаметров существует для каждого материала.

Для того, чтобы добавить новый материал в справочник, следует:

1. Нажать кнопку Новый набор. Откроется диалог задания названия набора;

- 2. Ввести название материала (например, Чугун), и нажать кнопку ОК;
- 3. Занести необходимые диаметры, нажимая кнопку Добавить;
- 4. Нажать на кнопку Сохранитьпосле ввода всех необходимых значений;
- 5. Для выхода из окна Сортамент нажать кнопку ОК.

20.1.6. Удаление материала из справочника

Для того чтобы удалить материал из справочника надо:

- 1. Выбрать материал в справочнике;
- 2. Нажать кнопку Удалить набор;
- 3. Нажать кнопку Сохранить.

Для выхода из окна Сортамент нажать на кнопку ОК.

20.2. Справочник по насосам

Для вычисления напора воды, создаваемого насосом, используется расход воды, проходящий через насос. В данном справочнике заносится характеристика насоса (зависимость расхода воды от напора), для дальнейшего использования в модели.

При задании насоса с помощью справочника величину напора, развиваемого насосом, задавать не нужно, так как значение напора программа самостоятельно будет брать из справочника.

Справочник по запорной арматуре можно открыть через базу данных по насосам в

поле Марка насоса на под. (обр.) тр-де, либо нажав кнопку 🕑 панели инструментов.

После нажатия появляется окно Справочника насосов, в которой приведены характеристики в зависимости от расхода воды (м³/ч) и напора (м вод.ст.), создаваемого насосом, а также приведен график этой зависимости.

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

							Насосы							
ļ	ID	Марка	насоса	Ч	астота вращения, об	Диаме	тр рабочего	ко. М	ах тем	пература сет	Допус	тимое давление	Мах вь	ICOT
-	34	20Д-6		97	70	855		8)		4		9	
	36	C31250	-70	15	500	490		1	30		7,5		11	
ļ	37	C32500	-60	15	500	470		1	30		12		11	
ļ	38	C31250	-140 1	15	500	470		1	30		7,5		11	
l	39	C31250	-45	15	500	415		1	30		7,5		11	
l	40	C32500	-180 1	30	000	415		1:	20		28		10	
l	41	C3500-7	70	30	000	250		1	30		10		16	
l	42	C35000	-160	30	000	415		1:	20		40		10	
l	43	C35000	-70	15	500	550		1:	20		15		6	
l	44	C3800-	100	15	500	415		1	30		5.5		11	
_			Характе	ристи	ка насоса	1		Доб	звить	Удалит		Импорт	Эксг	nopr
╀	<u>Б, м3/ч</u> П	1	<u>Н, м вод. ст.</u> 102	Пип	<u>ГКПД, %</u>									
ł	100		102	0	21	0				110		* *->	<	~
ł	900		109	0	51	0			70	100			-	~
ł	1400		108	1	70	0			60	90				
ł	2000		100	2	76	0			50 3	20				
ł	22000		94	1	74	0		8	1	60	- /	,		
ł	2200		54	-	(4	-		臣	40	50				
1								×	30	9 40				
									20	30 /	,			
									10	20 /				
										10				
									0	0	500	4000 44		
										U	Pac	ход воды (G. м	13/4)	.000
							•							

Рисунок 20.7. Окно Справочника насосов

Помимо этого в таблице насосов отображены: частота вращения (об/мин) и диаметр рабочего колеса (мм), максимальная температура сетевой воды (град. Цельсия), допустимое давление на всасывании (кгс/см²), максимальная высота всасывания (м вод.ст.), КПД (%).

На графике красными точками обозначены границы рабочей зоны насосов, а зеленой - рабочая точка.

В таблице характеристик в колонке тип каждой точке соответствует значение 0, 1 или 2:

- 0-точки, лежащие вне рабочей зоны (на графике они изображены черным цветом);
- 1-точки, обозначающие границы рабочей зоны (на графике они красные);
- 2-рабочая точка насоса (на графике она зеленая).

Для просмотра характеристики по интересующей марке насоса необходимо, наведя курсор на эту марку, нажать левую кнопку мыши.

	ID	Марка насоса	Частота вращения, об	Диаметр рабочего ко.	Мах температура сете	Допустимое давление	Мах высота
►	34	20Д-6	970	855	80	4	9
	36	ຟອີ1250-70	1500	490	180	7,5	11

Рисунок 20.8. Просмотр марки насоса

Сразу же в нижней части диалогового окна отобразятся характеристики соответствующие данному насосу, а также график зависимости расхода воды от напора. (см. *рис. "Просмотр характеристики насоса"*).

Если в таблице характеристик в нижней левой части окна выделить интересующую строку, нажав на значение расхода, напора, типа и т.д. левой клавишей мыши, то выделенная точка будет показана на графике (обведена в черный кружок, см. *рис.* "Просмотр характеристики насоса").

Рисунок 20.9. Просмотр характеристики насоса

- Открытие справочника по насосам;
- Выбор марки насоса из справочника;
- Добавление марки в справочник;
- Импорт данных по насосам;
- Экспорт данных по насосам;
- Удаление насоса.

20.2.1. Открытие справочника по насосам

Открыть справочник можно двумя способами.

Первый способ:

1. Нажать кнопку Па панели инструментов для просмотра или редактирования справочника.

Второй способ:

- 1. Открыть окно семантической информации по насосу (⁽¹⁾);
- 2. Установить курсор с правой стороны от поля Марка насоса на подающем тр-де. В случае если насос установлен на обратном трубопроводе, использовать поле в строке Марка насоса на обратном (*Mark_obr*).

Насосная станция	_ 🗆 🔺 X
🖹 M 🔄 🕨 🔂 🚭 🚭 🗸 🖬 🖆 M 🚽 🕨 🔡	¥ 🔮
Текущая запись Запрос База Ответ	Þ
Наименование насосной станции	
Номер источника	
Геодезическая отметка, м	
Марка насоса на подающем	
Число насосов на подающем тр-де	12
Марка насоса на обратном	=
Число насосов на обратном тр-де	
Напор насоса на подающем трубопроводе, м	
Напор насоса на обр. трубопр-де, м	
Напор на входе в насосную в под. трубопр-де, м	
Напор на входе в насосную в обр. трубопр-де, м	
Напор на выходе из насосной в под. трубопр-де, м	
Напор на выходе из насосной в обр. трубопр-де, м	
Расход воды в подающем трубопроводе, т/ч	
Расход воды в обратном трубопроводе, т/ч	
Температура воды в подающем трубопроводе, °С	-

Рисунок 20.10. Выбор марки насоса

3. Нажать кнопку Откроется окно справочника по насосам.

🚹 Важно

Кнопка будет видна только когда активна правая часть строки.

20.2.2. Выбор марки насоса из справочника

Для ввода конкретной марки насоса нужно:

- 1. Открыть окно семантической информации по конкретному насосу (3);
- ^{2.} Установить курсор с правой стороны от поля Марка насоса на подающем тр-де. В случае если насос установлен на обратном трубопроводе, использовать поле строки Марка насоса на обратном (*Mark obr*).

Насосная станция (нет данных) *	_ 🗆 🔺 X
🔠 M 🔸 🕨 🔁 🖬 🖌 🖬 🖄	🖆 🖆 📓 📽 🖀 🥤
Текущая запись Запрос База Ответ	۱.
Наименование насосной станции	Hacoc 2 HC II THC
Номер источника	
Геодезическая отметка, м	78
Марка насоса на подающем	
Число насосов на подающем тр-де	VE
Марка насоса на обратном	=
Число насосов на обратном тр-де	
Напор насоса на подающем трубопроводе, м	
Напор насоса на обр. трубопр-де, м	
Напор на входе в насосную в под. трубопр-де, м	
Напор на входе в насосную в обр. трубопр-де, м	
Напор на выходе из насосной в под. трубопр-де, м	
Напор на выходе из насосной в обр. трубопр-де, м	
Расход воды в подающем трубопроводе, т/ч	
Расход воды в обратном трубопроводе, т/ч	
Температура воды в подающем трубопроводе, °С	~

Рисунок 20.11. Выбор марки насоса

- 3. Нажать кнопку ...;
- 4. В открывшемся окне Справочника насосовс помощью левой кнопки мыши выделить необходимую марку (для поиска нужной марки можете воспользоваться полосой прокрутки);
- 5. Нажать кнопку Выбор. Марка насоса автоматически будет занесена в таблицу исходных данных, а вы вернетесь в таблицу исходных данных.

Примечание

Кнопка будет видна только, когда активна правая часть строки.

🚹 Важно

Если вы впишите марку в таблицу исходных данных с клавиатуры, не занеся предварительно эти данные в справочник насосов, то расчет выдаст ошибку в строке Марка насоса, в связи с тем, что в справочнике эта информация отсутствует.

20.2.3. Добавление марки в справочник

Если в справочнике насосов необходимая вам марка отсутствует, то нужно занести новую марку в справочник самостоятельно, для этого следует:

- 1. Нажать кнопку D на панели инструментов. Откроется справочник по насосам;
- 2. В появившемся окне, нажмите кнопку Добавить . В таблице насосы и характеристики насосов появится новая строка.

авочни	к насосов						
			Насосы				
ID	Марка насоса	Частота вращения, о	Диаметр рабоче	го ко. Ма	к температура сет	Допустимое давле	эние Мах высот
233	300Д90	1000	0	0		0	0
234	200Д60	1000	0	0		0	0
235	300Д90А	1000	0	0		0	0
236	6НДв	1450	0	0		0	0
237	1Д800-56а	1450	0	0		0	0
238	1Д200-80	2900	0	0		0	0
239	ЦНС60-99	2950	0	0		0	0
240	1Д1600-90	980	0	0		0	0
241		0	0	0		0	0
G, м3	Характер /ч Н, м вод. ст.	истика насоса Тип КПД, %	W	Добав	ить Удалить 0 10 9 9	. Импорт	Экспор
				8	8 8 7		

Рисунок 20.12. Добавление марки насоса в справочник

- 3. В верхнюю часть таблицы Насосы внести марку насоса, частоту вращения (об/ мин), диаметр рабочего колеса (мм), максимальную температуру сетевой воды (С), допустимое давление на всасе (кгс/см²) и максимальную высоту всасывания (м. вод.ст.);
- 4. После занесения названия марки насоса, необходимо, также задать в таблице характеристик насоса:
 - Расход, G (м³/ч);
 - Напор, Н (м вод.ст.) воды;
 - Указать тип, вводимой точки (0,1 или 2);
 - КПД, %.
- 5. В таблице характеристик после ввода первой строки нажать * для добавления следующей.

Характеристика насоса						
	G, м3/ч	Н, м вод. ст.	Тип	КПД, %	\vee	
*	100	50	0	58		

Рисунок 20.13. Добавление характеристики насоса

При вводе значений автоматически в правой части окна будет выстраиваться график зависимости расхода воды от напора.

Импорт данных по насосам

Импортировать, возможно, исходные данные, полученные в результате экспорта. Для этого надо:

- 1. Нажать кнопку на панели инструментов для открытия справочника по насосам;
- 2. Нажать на кнопку Импорт в диалоговом окне Справочник насосов;
- 3. В раскрывшемся окне указать файл, из которого будет производиться импорт.

Экспорт данных по насосам

Для того чтобы экспортировать данные по насосам в текстовый файл, надо:

- 1. Нажать кнопку D на панели инструментов для открытия справочника по насосам;
- 2. Выделить строку с определенной маркой насоса;
- 3. Нажать кнопку Экспорт;
- 4. В появившемся диалоговом окне Сохранить как, выбрать директорию и ввести имя текстового файла, с которым он будет сохранен;
- 5. Нажать кнопку Сохранить.

Удаление насоса

Если появилась необходимость какой-то насос удалить, надо:

- 1. Нажать кнопку 🕩 на панели инструментов для открытия справочника по насосам;
- 2. Выделить строку с маркой насоса, который необходимо удалить;
- 3. Нажать кнопку Удалить и при заданном вопросе: «Вы действительно хотите удалить насос?», нажать Да.

20.3. Справочник по запорной арматуре

Для вычисления сопротивления запорного устройства используется коэффициент гидравлического сопротивления (безразмерная величина) и условный диаметр. В данном справочнике для ряда запорных устройств, приводятся зависимости коэффициента гидравлического сопротивления от степени открытия запорного устройства (либо от угла закрытия поворотного устройства), для дальнейшего использования в модели.

Справочник по запорной арматуре можно открыть через базу данных по запорным

устройствам в поле Марка либо нажав кнопку 🗵 на панели инструментов.

После нажатия появляется таблица справочника по запорной арматуре, в которой приведены значения коэффициентов местного сопротивления в зависимости от

степени открытия (в %) или от угла поворота задвижки (в град.), а также приведен график этой зависимости. (см. *рис. "Окно Справочника по запорной арматуре"*)

		3a	торная арматура				
-	D Марка арматуры			Тиг	1 4		
4	2 Лудло с выемкой	і для клапана		0			
	3 Клапан с двустор	апан с двусторонним уплотнением 1					
4	Клапан с двустор	юнним уплотнением и сферический	клапан	1			
	5 Лудло с выемкой	Лудло с выемкой для клапана, концевая 0					
6	Лудло с выемкой	ідля клапана, концевая dm/d=1.25		0			
1	7 Лудло с выемкой	для клапана, концевая dm/d=1.5		0			
8	3 Лудло с выемкой	для клапана, с полным кольцом н	а клапане	0			
0	Э Лудло с выемкой	для клапана, концевая		0			
•	10 Вентиль d=38 мм			0	1		
1	 Вентиль d=200 м 	M		0			
-	12 Запвижка "Москі	sa"	87.55 S	0			
	Med	тные сопротивления	Добавить	Удалить Имп	орт Экспорт		
-	Степень открытия, %	200					
	10	12	1				
	1,2	12	0.9				
-	J,3	4,4	0.8				
-	J,4	2,6	0.7				
-1	1,3	17	0.6				
-12	J,6	1.7	0.5				
-	J,/	1,5	0.4				
-	J,8	1,3	0.3				
_	8	1,11	0.2		-		
ŧ			0.1				
			0				
			0	25 50 75 100 1	25 150 175 200		
			K	ээффициент местного со	противления		

Рисунок 20.14. Окно Справочника по запорной арматуре

В столбец ID автоматически заноситься порядковый номер запорного устройства в справочнике.

В столбце Марка арматуры указывается название запорного устройства.

Столбец Тип обозначает:

- Если в поле тип 0, то в таблице местных сопротивлений указывается степень открытия (в %);
- Если в поле тип 1, то в таблице указывается угол поворота закрытия задвижки (в град.).

Для просмотра данных по интересующей марке арматуры необходимо, наведя курсор на эту марку, нажать левую клавишу мыши. (*рис. "Просмотр марки запорного устройства"*).

	9	Лудло с выемкой для клапана, концевая	0
►	10	Вентиль d=38 мм	0
	11	удентиль d=200 мм	0

Рисунок 20.15. Просмотр марки запорного устройства

Сразу же в нижней части диалогового окна отобразятся местные сопротивления соответствующие данному запорному устройству, а также график зависимости коэффициента местного сопротивления от степени открытия или от угла поворота задвижки. (*рис. "Просмотр характеристики запорного устройства"*).

Если в таблице местных сопротивлений выделить интересующую строку, нажав на любое значение степени открытия/угла поворота либо сопротивления левой клавишей мыши, то выделенная точка будет показана на графике. (см. *рис. "Просмотр характеристики запорного устройства"*).

Рисунок 20.16. Просмотр характеристики запорного устройства

- Открытие справочника по запорной арматуре;
- Выбор марки запорной арматуры из справочника;
- Добавление марки в справочник;
- Импорт данных по запорным устройствам;
- Экспорт данных по запорным устройствам;
- Удаление запорного устройства из справочника.

20.3.1. Открытие справочника по запорной арматуре

Открыть справочник можно двумя способами.

Первый способ:

1. Нажать кнопку на панели инструментов для просмотра или редактирования справочника.

Второй способ:

- ^{1.} Открыть окно семантической информации по конкретной задвижке (³);
- 2. Установить курсор с правой стороны от строки Марка задвижки на подающем или Марка задвижки на обратном и нажать кнопку Откроется справочник по запорной арматуре.

Задвижка *	_ 🗆 🔺 X
🔠 H 4 🕨 H 🔂 🐼 🖇	- 🗳 🗳 🖆 🎽 🖉 🦉
Текущая запись Запрос База Отв	ет
Наименование арматуры	391
Номер источника	
Геодезическая отметка, м	167.8
Марка задвижки на подающем	
Условный диаметр на подающем, м	5
Степень открытия на подающем	
Марка задвижки на обратном	
Условный диаметр на обратном, м	
Степень открытия на обратном	
Место установки	
Тип трубопровода	
Располагаемый напор, м	
Располагаемый напор на выходе, м	
Напор в подающем трубопроводе, м	
Напор после узла в подающем, м	
Напор в обратном трубопроводе, м	.

Рисунок 20.17. Открытие справочника по запорной арматуре

Примечание

Кнопка... будет видна только, когда активна правая часть строки Марка.

20.3.2. Выбор марки запорной арматуры из справочника

Запорная арматура это объект сети, который характеризуется двумя режимами: открыта и закрыта. Причем открыта - это режим, зависящий от степени открытия (в %) либо от угла поворота задвижки (в град.).

При заполнении таблицы исходных данных по запорной арматуре возможно два варианта:

- Не задавать марку запорной арматуры. В этом случае устройство будет считаться полностью открытым и не создавать никакого гидравлического сопротивления. Исходной информацией в этом случае является только геодезическая отметка;
- Задавать марку запорной арматуры. Если задавать конкретную марку запорного устройства, то дополнительно необходимо указать Условный диаметр и Степень открытия каждого устройства.

Для выбора марки запорной арматуры следует:

- 1. Открыть окно семантической информации по конкретной задвижке (3);

Задвижка *	_ 🗆 🔺 X
😂 💿 🔂 🖌 🔸 🕨	- 🗳 🗳 🖆 🎽 🖉 🌋 🥤
Текущая запись Запрос База Отв	et 🕨
Наименование арматуры	391
Номер источника	
Геодезическая отметка, м	167.8
Марка задвижки на подающем	
Условный диаметр на подающем, м	2
Степень открытия на подающем	
Марка задвижки на обратном	
Условный диаметр на обратном, м	
Степень открытия на обратном	
Место установки	
Тип трубопровода	
Располагаемый напор, м	
Располагаемый напор на выходе, м	
Напор в подающем трубопроводе, м	
Напор после узла в подающем, м	
Напор в обратном трубопроводе, м	.

Рисунок 20.18. Выбор марки запорной арматуры

- В открывшемся окне Справочник по запорной арматурес помощью левой кнопки мыши выделить необходимую марку (для поиска нужной марки можете воспользоваться полосой прокрутки);
- 4. Нажать кнопку Выбор.

Примечание

Кнопка будет видна только, когда активна правая часть строки Марка.

Предупреждение

Если вы впишите марку в таблицу исходных данных с клавиатуры, не занеся предварительно эти данные в справочник запорной арматуры, то расчет выдаст ошибку в строке Марка, в связи с тем, что в справочнике эта информация отсутствует.

20.3.3. Добавление марки в справочник

Если в справочнике запорной арматуры необходимая вам марка отсутствует, то нужно занести новую марку в справочник самостоятельно. Для этого следует:

- 1. Нажать кнопку Эна панели инструментов. Откроется справочник по запорным устройствам;
- 2. В появившемся окне, нажать кнопку Добавить . В справочнике запорной арматуры в конец списка добавится новая строка.

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГТ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

	Запорная арматура		
ID	Марка арматуры	Тип	
9	Лудло с выемкой для клапана, концевая	0	
10	Вентиль d=38 мм	0	
11	Вентиль d=200 мм	0	
12	Задвижка "Москва"	0	
13	Чугунная параллельная задвижка шириной 0.4 d при d/dm=1.5	0	
14	Чугунная параллельная задвижка шириной 0.4 d при d/dm=1.25	0	
22	Задвижка "Москва"1	0	
23	Простая без выемки для клапана 1	0	
27	Valve_1	0	
29	N	0	
Степ	Местные сопротивления ень открытия. % Сопротивление 10	Импорт	Экспорт
Cren	Местные сопротивления внь открытия, % Сопротивление 10 9 8 7 6 5 4 3 2 1 0 0 2 4	Импорт	Зкопорт 3копорт 8 10

Рисунок 20.19. Добавление марки запорной арматуры

- 1. Занести в поле Марка арматурыназвание арматуры;
- 2. Указать в поле Тип, тип запорного устройства.
 - Если в поле тип 0, то в таблице местных сопротивлений указаны: степень открытия (в %);
 - Если в поле тип 1, то в таблице: угол поворота закрытия задвижки (в град.).
- 3. В таблице местных сопротивлений задать степень открытия задвижки (в %) или угол поворота (в град.) и соответствующее сопротивление. После ввода первой строки нажать * для добавления следующей строки.

	Мест	ные сопротивления
	Угол поворота, град	Сопротивление
*	10	180
		42

Рисунок 20.20. Добавление характеристики запорной арматуры

При вводе значений автоматически в правой части окна будет выстраиваться график зависимости коэффициента местного сопротивления от степени открытия.

20.3.4. Импорт данных по запорным устройствам

Импортировать, возможно, исходные данные, полученные в результате экспорта. Для этого надо:

- 1. Нажать кнопку 🕑 на панели инструментов для открытия справочника по запорным устройствам;
- 2. Нажать на кнопку Импорт в диалоговом окне Справочник по запорной арматуре;
- 3. В раскрывшемся окне указать файл, из которого будет производиться импорт.

20.3.5. Экспорт данных по запорным устройствам

Система позволяет экспортировать данные по запорной арматуре в текстовый файл. Для экспорта надо:

- 1. Нажать кнопку на панели инструментов для открытия справочника по запорным устройствам;
- 2. Выделить строку с необходимой маркой арматуры;
- 3. Нажать кнопку Экспорт;
- 4. В строке Имя файлазадать имя для экспортируемого текстового файла;
- 5. Нажать кнопку Сохранить.

20.3.6. Удаление запорного устройства из справочника

Если будет необходимость какое-то запорное устройство удалить, то для этого надо:

- 1. Нажать кнопку 🗵 на панели инструментов для открытия справочника по запорным устройствам;
- 2. Выделить строку с маркой запорной арматуры, которую необходимо удалить;
- 3. Нажать кнопку Удалить и при заданном вопросе: «Вы действительно хотите удалить запорное устройство?», нажать Да.

20.4. Справочник по теплоносителям

Справочник по теплоносителю позволяет отредактировать и занести новые виды теплоносителя, такие как этиленгликоль, пропиленгликоль и другие. В дальнейшем внесенные характеристики жидкости могут участвовать в расчетах.

20.4.1. Открытие справочника

Для того чтобы открыть справочник по теплоносителям следует:

1.

Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку инструментов. На экране появится окно теплогидравлических расчетов (см. *рис. "Окно теплогидравлических расчетов ZuluThermo"*).
ZuluThermo		▲ ×
	Cn	ой
Наладка Поверка Температ	турный график Конструкторский Сервис	
 С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета 		
	Раскраска (нет>	•
Расчет Настройки	Справка Закрыть	

Рисунок 20.21. Окно теплогидравлических расчетов ZuluThermo

- 2. Нажать кнопку Слой...и выбрать слой тепловой сети;
- 3. Нажать кнопку Настройки;
- 4. Перейти во вкладку Теплоноситель;
- 5. Нажать кнопку Редактировать. Откроется окно справочника по теплоносителям, показанное на *рис. "Окно справочника по теплоносителям"*.

Название теплоносителя:		Вода		•	Добавить теплоносител
T, *C	Плотность, кл/м3	Дин.вязкость, Н°с/м2*10-3	Теплоемкость, КДж/кл*К		Идалить теплоноситель
0.0	999.8255	1.7895386710	4.217	100	
5.0	1000.0171	1.5172659448	4.204		Переименовать
10.0	999.7918	1.3053261745	4.193		
15.0	999.2104	1.1371943618	4.186	=	
20.0	998.3197	1.0013745583	4.182		Добавить строку
25.0	997.1563	0.8899313851	4.181		
30.0	995,7484	0.7972466535	4.179	1.00	Вставить строку
35.0	994,1188	0.7192514136	4.178		
40.0	992.2854	0.6529377844	4.179		Эдалить строку
45.0	990.2629	0.5960427054	4.181		
50.0	988.0633	0.5468348396	4.182		
55.0	985.6972	0.5039702215	4.183		
60.0	983.1735	0.4663915526	4.185		
65.0	980.5004	0.4332568493	4.188		Course and and
70.0	977.6850	0.4038877351	4.190		
75.0	974.7337	0.3777327024	4.194		Rewood
00.0	071 0500	0.0540004005	4 107		- Divide

Рисунок 20.22. Окно справочника по теплоносителям

В строке Название теплоносителя выбирается теплоноситель для редактирования.

Каждая кнопка выполняет соответствующее ей действие:

- Добавить теплоноситель- добавляет новый теплоноситель в справочник;
- Удалить теплоноситель- удаляет теплоноситель из справочника;
- Переименовать- меняет имя для выбранного теплоносителя;
- Добавить строку- добавляет новую строку в конец списка;
- Вставить строку- вставляет пустую строку, перед выделенной строкой;

• Удалить строку - удаляет выделенную строчку из списка.

20.4.2. Добавление нового теплоносителя в справочник

Для того чтобы добавить новый теплоноситель следует:

- 1. Открыть справочник по теплоносителям;
- 2. Нажать кнопку Добавить теплоноситель. Ввести имя нового теплоносителя;
- 3. В появившейся таблице ввести температуру, плотность, динамическую вязкость и теплоёмкость теплоносителя, как показано на *рис. "Пример добавления теплоносителя"*. Для добавления новой строки использовать кнопку Добавить строку;
- 4. Нажать кнопку Сохранитьдля сохранения теплоносителя.

Іазвани	е теплоносителя;	Этиленгликоль 52% (-40)	•	Добавить теплоносителя
T, *C	Плотность, кг/м3	Дин.вязкость, Н°с/м2*10-3	Теплоенкость, КДж/кл*К	Удалить теплоноситель
40.0	1108.0000	110.800000000	3.040	
20.0	1100.0000	27.500000000	3.110	Переименовать
0.0	1092.0000	10.370000000	3.190	
20.0	1082.0000	4.8700000000	3.260	
40.0	1069.0000	2.5700000000	3.340	Добавить строку
50.0	1057.0000	1.590000000	3.410	0
0.08	1045.0000	1.050000000	3.490	Вставить строку
100.0	1032.0000	0.7220000000	3.560	Удалить строку
				Сохранить
				-

Рисунок 20.23. Пример добавления теплоносителя

20.4.3. Редактирование существующего теплоносителя

Для изменения существующего теплоносителя надо:

- 1. В строке Название теплоносителявыбрать теплоноситель;
- 2. Внести изменения. Чтобы вставить строчку в определенном месте, следует выделить строчку и нажать Вставить строку, перед выделенной строкой вставиться пустая строка. Кнопка Добавить строкуслужит для добавления новой строки в конец списка;
- 3. Нажать кнопку Сохранитьдля сохранения изменений.

20.4.4. Удаление теплоносителя из справочника

Для удаления теплоносителя из справочника

- 1. В строке Название теплоносителявыбрать теплоноситель;
- 2. Нажать кнопку Удалить теплоноситель;
- 3. Нажать кнопку Сохранитьдля сохранения изменений.

20.4.5. Переименование теплоносителя

Для того, чтобы переименовать теплоноситель следует:

- 1. В строке Название теплоносителявыбрать теплоноситель;
- 2. Нажать кнопку Переименовать;
- 3. Ввести новое название теплоносителя и нажать ОК;
- 4. Нажать кнопку Сохранитьдля сохранения изменений.

20.5. Справочник по местным сопротивлениям

Учет местных сопротивлений, установленных на участках тепловой сети, осуществляется с помощью справочника по местным сопротивлениям. Он позволяет рассчитать сумму коэффициентов, если известно количество и виды сопротивлений (задвижки, компенсаторы и т.д.). С его помощью вносится информация о местных сопротивлениях по каждому участку сети.

20.5.1. Открытие справочника по местным сопротивлениям

Для открытия справочника местных сопротивлений следует:

- 1. На панели Навигация нажать кнопку 3;
- ². Подвести курсор мыши к участку тепловой сети и щелкнуть левой клавишей мыши (слой при этом должен быть активным или удерживать при щелчке Ctrl+Shift). Откроется окно с семантической информацией по данному участку;

Участки	_ 🗆 🔺 X
📲 H 🔹 🕨 🔁 😰 📣 - 🕒 🖄 I	🖆 🎽 🕍 🕍 👘
Текущая запись Запрос База Ответ	►
Номер источника	
Наименование начала участка	TK-1
Наименование конца участка	TK-2
Длина участка, м	185
Внутренний диаметр подающего трубопровода, м	0.175
Внутренний диаметр обратного трубопровода, м	0.175
Сумма коэф. местных сопротивлений под. тр-да	
Местные сопротивления под.тр-да	
Сумма коэф. местных сопротивлений обр. тр-да	5
Местные сопротивления обр.тр-да	
Шероховатость подающего трубопровода, мм	
Шероховатость обратного трубопровода, мм	
Зарастание подающего трубопровода, мм	
Зарастание обратного трубопровода, мм	
Коэффициент местного сопротивления под.тр-да	
Коэффициент местного сопротивления обр.тр-да	+

Рисунок 20.24. Открытие справочника по местным сопротивлениям

reerree eenpervierverve	ΚαθΦ	. Коли	
Задвижка	0.5	2	1
Зентиль с косым шпинделем	0.5	0	
Зентиль с вертикальным шпинделем	6.0	0	
Эбратный клапан нормальный	7.0	0	
Эбратный клапан "Захлопка"	3.0	0	
(ран проходной	2.0	0	
Компенсатор однолинзовый без рубашки	1.0	0	
Компенсатор однолинзовый с рубашкой	0.1	0	
Компенсатор сальниковый	0.3	0	
Компенсатор П-образный	2.8	1	
Этвод, гнутый под углом 90°, со складками R = 3d	0.8	0	
Этвод, гнутый под углом 90°, со складками R = 4d	0.5	0	
Этвод, гнутый под углом 90°, гладкий R = 1d	1.0	0	
Этвод, гнутый под углом 90°, гладкий R = 3d	0.5	3	1
Этвод, гнутый под углом 90°, гладкий R = 4d	0.3	0 3	1
Этвод сварной одношовный под углом 30°	0.2	0	
Этвод сварной одношовный под углом 45°	0.3	0	
Этвод сварной одношовный под углом 60°	0.7	0	
Этвод сварной двухшовный под углом 90°	0.6	0	
Этвод сварной трехшовный под углом 90°	0.5	0	
Гройник при слиянии потока на проходе	1.2	0	
ройник при слиянии потока на ответвлении	1.8	0	
ройник при разветвлении потока на проходе	1.0	0	
ройник при разветвлении потока на ответвлении	1.5	0	
ройник при встречном потоке	3.0	0	
3незапное расширение	1.0	0	
Знезапное сужение	0.5	0	
рязевик	10.0	0	,

Рисунок 20.25. Справочник по местным сопротивлениям

20.5.2. Занесение местных сопротивлений

Для занесения местных сопротивлений следует указать количество объектов в столбце Количество. Для этого следует:

- 1. Открыть справочник по местным сопротивлениям;
- 2. Указать в столбце Количество напротив нужного местного сопротивления их количество. В случае, если в справочнике не оказалось нужного нам объекта, установленного на участке, следует занести его коэффициент местного сопротивления в строку Прочие.

Местное сопротивление	Ксэф	Коли	
Задвижка	0.5	2	
Вентиль с косым шпинделем	0.5	0	-
Вентиль с вертикальным шпинделем	6.0	0	-
Обратный клапан нормальный	7.0	0	-
Обратный клапан "Захлопка"	3.0	0	-
Кран проходной	2.0	0	-
Компенсатор однолинзовый без рубашки	1.0	0	-
Компенсатор однолинзовый с рубашкой	0.1	0	
Компенсатор сальниковый	0.3	0	
Компенсатор П-образный	2.8	1	
Отвод, гнутый под углом 90°, со складками R = 3d	0.8	0	-
Отвод, гнутый под углом 90°, со складками R = 4d	0.5	0	-
Отвод, гнутый под углом 90°, гладкий R = 1d	1.0	0	
Отвод, гнутый под углом 90°, гладкий R = 3d	0.5	3]=
Отвод, гнутый под углом 90°, гладкий R = 4d	0.3	0 2	1
Отвод сварной одношовный под углом 30°	0.2	0	-
Отвод сварной одношовный под углом 45°	0.3	0	-
Отвод сварной одношовный под углом 60°	0.7	0	-
Отвод сварной двухшовный под углом 90°	0.6	0	-
Отвод сварной трехшовный под углом 90°	0.5	0	
Тройник при слиянии потока на проходе	1.2	0	-
Тройник при слиянии потока на ответвлении	1.8	0	-
Тройник при разветвлении потока на проходе	1.0	0	-
Тройник при разветвлении потока на ответвлении	1.5	0	
Тройник при встречном потоке	3.0	0	-
Внезапное расширение	1.0	0	
Внезапное сужение	0.5	0	
Грязевик	10.0	0	-

Рисунок 20.26. Внесение местных сопротивлений

- Ввести с клавиатуры количество объектов. Общая сумма всех коэффициентов будет автоматически указана ниже в строке Сумма;
- 4. Нажать кнопку ОК.

После занесения информации в справочник местных сопротивлений, в строке базы данных *Местные сопротивления под.* (обр.) тр-да появится информация о коде местного сопротивления и количестве этих сопротивлений, например, 0.0; 2; 0; 0; 0; 0; 3. Коэффициенты просуммируются и итоговое значение суммы местных сопротивлений запишется в поле *Сумма коэф. местных* сопротивлений под. (обр.) тр-да. (см. рис. "Сумма коэффициентов местных сопротивлений").

Участки *	_ 🗆 .	×		
📲 k 🔹 🕨 k 🔁 😰 🖇 🗸 💾 🛃	🖆 📸 🖩 🖆 🖆	f		
Текущая записы Запрос База Ответ		►		
Номер источника				
Наименование начала участка	TK-1			
Наименование конца участка	TK-2	Ξ		
Длина участка, м	185			
Внутренний диаметр подающего трубопровода, м	0.175			
Внутренний диаметр обратного трубопровода, м	0.175			
Сумма коэф. местных сопротивлений под. тр-да	5.3			
Местные сопротивления под.тр-да	0.0,2,0;0;0;0;0;0;0;0;0;1;			
Сумма коэф. местных сопротивлений обр. тр-да				
Местные сопротивления обр.тр-да				
Шероховатость подающего трубопровода, мм				
Шероховатость обратного трубопровода, мм				
Зарастание подающего трубопровода, мм				
Зарастание обратного трубопровода, мм				
Коэффициент местного сопротивления под.тр-да				
Коэффициент местного сопротивления обр.тр-да		Ŧ		

Рисунок 20.27. Сумма коэффициентов местных сопротивлений

Глава 21. Таблицы баз данных элементов тепловой сети

В таблицах используются следующие сокращенные обозначения

Поле	Значение	Обозначени
Тип	Исходные данные;	И
данных: Обязательные; Необязательные, информативные;		О Н
	Результаты расчета.	Р
Тип поля	Числовой	Ч
	Текстовый	Т
	Дата	Д

📄 Примечание

Например **ИН** - означает что данное поле содержит исходную информацию, которая задается пользователем, данная информация не является обязательной для проведения расчетов, а является дополнительной информацией для пользователя. **ИО** - означает что данное поле содержит исходную информацию, которая задается пользователем и является обязательной для проведения расчетов. Помимо этого могут встречаются следующие обозначения: **ИО*** - означает, что данное поле должно быть обязательно заполнено только для проведения поверочного расчета. **ИО**** - означает что данное поле должно быть обязательно заполнено только для проведения расчета с учетом тепловых потерь. **ИО***** - означает что данное поле должно быть обязательно заполнено только для проведения расчета.

21.1. Источник тепловой сети

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
1	Name_pred	Наименование предприятия	Задается пользователем, например МУП Тепловые сети	ИН
2	Name	Наименование источника	Задается пользователем, например Котельная Северная	ИН
3	Nist	Номер источника	Задается пользователем цифрой, например 1, 2, 3 и т.д. по количеству котельных на предприятии. После выполнения расчетов	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			присвоенный номер источника будет прописан у всех объектов, которые будут запитаны от данной котельной	
4	H_geo	Геодезическая отметка, м	Задается отметка оси (верха) трубы, выходящей из данного источника. Она может автоматически быть считана со слоя рельефа (Раздел 18.3, «Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»).	ИО
5	T1_r	Расчетная температура в подающем трубопроводе, °С	Задается расчетное значение температуры сетевой воды в подающем трубопроводе, на которое было выполнено проектирование системы централизованного теплоснабжения, например 150, 130, 110 или 95 °С	ИО
6	Thz_r	Расчетная температура холодной воды, °С	Задается расчетная температура холодной водопроводной воды, например 5, 8 °С. Максимальное значение 20°С. Минимальное значение 1°С.	ИО
7	Tnv_r	Расчетная температура наружного воздуха,°С	Задается расчетное значение температуры наружного воздуха (например -25, -30, -50 и т.д. °С), которое принимается в соответствии со СНиП. Минимальное значение -60°С.	ИО
8	T1_t	Текущая температура воды в подающем тру-де, °С	Задается текущая температура воды в подающем трубопроводе (на выходе из источника), например 70, 100, 120, 150 и т.д. °С.	ИО*

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			Данное значение должно обязательно задаваться при выполнении поверочного расчета.	
9	Tnv_t	Текущая температура наружного воздуха,°С	Задается текущая температура наружного воздуха, например +8, -5, -10, -20 и т.д. °С. Данное значение должно обязательно задаваться при выполнении поверочного расчета.	ИО*
10	H_ras	Расчетный располаг. напор на выходе из источника, м	Задается расчетный располагаемый напор на выходе из источника (разность между давлением в подающем и давлением в подающем и давлением в обратном трубопроводах), например 30, 40, 70, 100 м. При выполнении наладки расчетный располагаемый напор на выходе из источника можно задать заведомо очень маленьким 5–10 м, в этом случае располагаемый напор на источнике будет подобран автоматически. Максимальное значение 1 м	ИО
11	H_obr	Расчетный напор в обратн. тр-де на источнике, м	Задается расчетное значение напора в обратном трубопроводе на источнике, например 20, 50, 100 и т.д. метров. Расчетный напор в обратном трубопроводе задается с учетом геодезической отметки расположения источника, например геодезическая отметка 50 метров, напор в обратном трубопроводе 20 метров, тогда расчетный напор в	ИО

№	Имя поля	Наименование поля	Информация,	Тип
			записываемая в поле	
			обратном трубопроводе на источнике равен 50 + 20 = 70 метров. Минимальное значение 0 м.	
12	Mode	Режим работы источника	значение о м. Выбирается из списка режим работы источника. Подробнее о режимах работы источника ????. Задается пользователем режим работы источника: 0 или Пусто - источник будет определяющим при работе на сеть. В этом случае данный источник будет характеризоваться расчетным располагаемым напором в обратном трубопроводе и максимальной подпиткой сети, которую он может обеспечить. 1 - источник не имеет своей подпитки, располагаемый напор на этом источнике поддерживается постоянным, а напор в обратном трубопроводе зависит от режима работы сети и определяющего источника; 2 - источник не имеет своей подпитки, но поддерживает напор в обратном трубопроводе зависит от режима работы сети и определяющего источника; 2 - источник не имеет своей подпитки, но поддерживает напор в обратном трубопроводе на заданном уровне, при этом располагаемый напор меняется в зависимости от режима работы сети и определяющего источника; 3 - источник, имеющий подпитку с заданным	ИО
			расчетным	

N⁰	Имя поля	Наименование поля	Информация,	Тип
			записываемая в поле	
			располагаемым напором	
			и расчетным напором в	
			обратном трубопроводе.	
			4 - источник, имеющий	
			фиксированную подпитку	
			с заданным расчетным	
			располагаемым напором.	
			Напор в обратном	
			трубопроводе на	
			источнике будет зависить	
			от величины этой	
			подпитки, режима работы	
			системы и соседних	
			источников включенных в	
13	Glimit	Максимальный расход на	Задается максимальный	ИО
		подпитку, т/ч	расход воды на	
			подпитку, например 20,	
			только в том случае,	
			источника Поллитка	
			ограничена	
			заланным значением	
14	Omax	Vстановленная тепловая	Ланное поле используется	ИО*
17	QIIIdx	мошность Гкал	лля расчета аварийной	no
			ситуации, когда	
			подключенная нагрузка	
			больше установленной	
			на источнике. При	
			достижении предельного	
			значения подключенной	
			нагрузки в процессе	
			расчета, будет	
			соответственно снижена	
			текущая температура на	
			Выходе из источника.	
			спелует оставлять	
			ПУСТЫМ ТОГЛА	
			установленная тепловая	
			мощность будет равняться	
			подключенной нагрузке.	
15	Ht ras	Текущий располаг напор	Определяется в результате	Р
15	111_140	на выхоле из источника м	пасчета	1
16	IIt nod	Hanan n wareserver ==		D
10	n_poa	папор в подающем тр-де,	Определяется в результате	٢
		IVI	расчета	

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
17	Pt_pod	Давление в подающем тр- де, м	Определяется в результате расчета	Р
18	Ht_obr	Текущий напор в обратн. тр-де на источнике, м	Определяется в результате расчета	Р
19	Pt_obr	Давление в обратном тр- де, м	Определяется в результате расчета	Р
20	Period	Продолжительность работы системы теплоснабжения (1-2)	Выбирается из списка число часов работы системы теплоснабжения в год: менее 5000 или более 5000 часов 1 - менее 5000 часов	ИО**
			2 - более 5000 часов	
21	Tsg_pod	Среднегодовая температура воды в под. тр-де,°С	Задается среднегодовая температура воды в под. тр-де, например 75 °C	ИО**
22	Tsg_obr	Среднегодовая температура воды в обр. тр-де,°С	Задается среднегодовая температура воды в обр. тр-де, например 50 °C	ИО**
23	Tsg_grunt	Среднегодовая температура грунта, °С	Задается среднегодовая температура грунта, например +5 °C	ИО**
24	Tsg_nv	Среднегодовая температура наружного воздуха,°С	Задается среднегодовая температура наружного воздуха, например +3 °C	ИО**
25	Tsg_podval	Среднегодовая температура воздуха в подвалах,°С	Задается среднегодовая температура воздуха в подвалах, например +10 °C	ИО**
26	Tgrunt	Текущая температура грунта,°С	Задается текущая температура грунта, например +2 °С	ИО**
27	Tpodval	Текущая температура воздуха в подвалах, °С	Задается текущая температура воздуха в подвалах, например +12 °C	ИО**
28	Qo_r	Расчетная нагрузка на отопление, Гкал/ч	Определяется в результате расчета	Р
29	Qsv_r	Расчетная нагрузка на вентиляцию, Гкал/ч	Определяется в результате расчета	Р
30	Qgv_r	Расчетная нагрузка на ГВС, Гкал/ч	Определяется в результате расчета	Р

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
31	Qo_t	Текущая нагрузка на отопление, Гкал/ч	Определяется в результате расчета	Р
32	Qsv_t	Текущая нагрузка на вентиляцию, Гкал/ч	Определяется в результате расчета	Р
33	Qgv_t	Текущая нагрузка на ГВС, Гкал/ч	Определяется в результате расчета	Р
34	Qsum	Суммарная тепловая нагрузка, Гкал/ч	Определяется в результате расчета	Р
35	Tpod	Температура на выходе из источника, °С	Определяется в результате расчета	Р
36	T2_t	Текущая температура воды в обратном тр-де, °С	Определяется в результате расчета	Р
37	Gso	Расход сетевой воды на CO, т/ч	Определяется в результате расчета	Р
38	Gsv	Расход сетевой воды на СВ, т/ч	Определяется в результате расчета	Р
39	Ggv	Расход сетевой воды на откр. ГВС, т/ч	Определяется в результате расчета	Р
40	Gsum_pod	Суммарный расход сетевой воды в под.тр., т/ч	Определяется в результате расчета	Р
41	Gut_pot	Расход воды на утечку из сис.теплопотреб., т/ч	Определяется в результате расчета	Р
42	Gpodpit	Расход воды на подпитку, т/ч	Определяется в результате расчета	Р
43	Gut_pod	Расход сетевой воды на утечку из под.тр., т/ч	Определяется в результате расчета	Р
44	Gut_obr	Расход сетевой воды на утечку из обр.тр., т/ч	Определяется в результате расчета	Р
45	Qpot_ts	Тепловые потери в тепловых сетях, Гкал/ч	Определяется в результате расчета	Р
46	Tb	Давление вскипания, м	Определяется в результате расчета	Р
47	Hstat	Статический напор, м	Определяется в результате расчета	Р

21.2. Узел тепловой сети

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
1	Name	Наименование узла	Задается пользователем наименование объекта, например ТК-1 или УТ-2	ИН

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
2	Nist	Номер источника	После выполнения расчетов в данном поле записывается цифра, например 1, 2, 3, и т.д. соответствующая номеру источника от которого запитывается данный узел тепловой сети	Р
3	H_geo	Геодезическая отметка, м	Задается отметка оси (верха) трубы, на которой установлен данный узел. Она может автоматически быть считана со слоя рельефа («Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»).	ИО
4	Gpod	Слив из подающего трубопровода, т/ч	Задается пользователем количество утечки из подающего трубопровода, например, 2, 3 т/ ч. Данный узел может устанавливаться в любом месте тепловой сети и позволяет имитировать режим аварии в подающем трубопроводе	ИО
5	Gobr	Слив из обратного трубопровода, т/ч	Задается пользователем количество утечки из обратного трубопровода, например, 2, 3 т/ ч. Данный узел может устанавливаться в любом месте тепловой сети и позволяет имитировать режим аварии в обратном трубопроводе, а также слив воды после системы топления	ИО
6	H_ras	Располагаемый напор, м	Определяется в результате расчета	Р
7	H_pod	Напор в подающем трубопроводе, м	Определяется в результате расчета	P
8	H_obr	Напор в обратном трубопроводе, м	Определяется в результате расчета	Р

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
9	Tpod	Температура воды в подающем трубопроводе, °С	Определяется в результате расчета	Р
10	Tobr	Температура воды в обратном трубопроводе, °C	Определяется в результате расчета	Р
11	Ppod	Давление в подающем трубопроводе, м	Определяется в результате расчета	Р
12	Pobr	Давление в обратном трубопроводе, м	Определяется в результате расчета	Р
13	Time	Время прохождения воды от источника, мин	Определяется в результате расчета	Р
14	Dist	Путь, пройденный от источника, м	Определяется в результате расчета	Р
15	Тb	Давление вскипания, м	Определяется в результате расчета	Р
16	Hstat	Статический напор, м	Определяется в результате расчета	Р
17	Hstat_out	Статический напор на выходе, м	Определяется в результате расчета	Р

21.3. Потребитель

Nº	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
1	Adres	Адрес узла ввода	Задается пользователем, например ул. Воронежская д.33	ИН
2	Name	Наименование узла	Задается наименование, например жилой дом, школа, и т.д.	ИН
3	Nist	Номер источника	После выполнения расчетов в данном поле записывается цифра, например 1, 2, 3, и т.д. соответствующая номеру источника от которого запитывается данный потребитель	P
4	H_geo	Геодезическая отметка, м	Задается геодезическая отметка оси (верха) трубопровода, на котором находится данный узел ввода. Она может автоматически быть считана со слоя рельефа	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			(«Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»).	
5	Hzdan	Высота здания потребителя, м	Задается высота здания, если точной высоты здания не известно, можно принимать условно 3 метра на этаж	ИО
6	N_schem	Номер схемы подключения потребителя	Выбирается схема присоединения узла ввода. Схемы приведены в приложении Приложение А, Схемы подключения	ИО
7	T1_r	Расчетная темп. сет. воды на входе в потреб.,°С	Задается расчетное значение температуры сетевой воды, на которое было выполнено проектирование систем отопления и вентиляции данного потребителя, например 150, 130, 105 или 95 °C	ИО
8	Qo_r	Расчетная нагрузка на отопление, Гкал/ч	Задается расчетная нагрузка на систему отопления. При отсутствии проектных данных расчетные тепловые нагрузки в могут быть определены по наружному объему здания или поверхности нагрева теплопотребляющего оборудования. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите в разделе «Настройка используемых единиц	ИО
9	Qsv_r	Расчетная нагрузка на вентиляцию, Гкал/ч	Задается пользователем по проектным данным в (Гкал/ч). При отсутствии проектных данных расчетные тепловые нагрузки на вентиляцию могут быть определены по наружному объему здания или поверхности нагрева	ИО

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

№	Имя поля	Наименование поля	Информация,	Тип
			записываемая в поле	
			теплопотребляющего оборудования. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите в разделе «Настройка используемых единиц измерения»	
10	Qgv_sred	Расчетная средняя нагрузка на ГВС, Гкал/ч	Задается пользователем по проектным данным в (Гкал/ч). При отсутствии проектных данных расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите в разделе «Настройка используемых единиц	ИО
11	Qgv_max	Расчетная максимальная нагрузка на ГВС, Гкал/ч	Задается пользователем по проектным данным в (Гкал/ч). При отсутствии проектных данных расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите в разделе «Настройка используемых единиц	ИО
12	Njil	Число жителей	Задается количество жителей для данного узла ввода, для учета часовой неравномерности	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
13	Kso	Коэффициент изменения нагрузки отопления	Задается пользователем в случае необходимости увеличения нагрузки на отопление по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное значение нагрузки на отопление будет увеличено соответственно на 10 или 20%	ИО
14	Ksv	Коэффициент изменения нагрузки вентиляции	Задается пользователем в случае необходимости увеличения нагрузки на вентиляцию по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное значение нагрузки на вентиляцию будет увеличено соответственно на 10 или 20%	ИО
15	Kgv	Коэффициент изменения нагрузки ГВС	Задается пользователем в случае необходимости увеличения нагрузки на ГВС по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное среднее значение нагрузки на ГВС будет увеличено соответственно на 10 или 20%.	ИО
16	Kb	Балансовый коэффициент закр.ГВС	Используется при определении балансовой нагрузки в наладочном расчете для закрытых схем ГВС. Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балансовый коэффициент. Коэффициент позволяет пользователю регулировать величину нагрузки (и расхода) на которую производится наладка. Если значение поля не задано , расчет берет значение коэффициента по	ИО

№	Имя поля	Наименование поля	Информация,	Тип
			записываемая в поле умолчанию: 1.15 для одноступенчатой схемы, 1.1 для двухступенчатой смешанной, 1.25 для двухступенчатой последовательной.	
17	Regul_G	Признак наличия регулятора на отопление	 выбирается из списка наличие регулирующего устройства на систему отопления. 0 (или пусто) - без регулятора 1 - регулятор расхода 2 - регулятор отопления 3 - регулятор давления в обратном 	ИО
18	Klapan_sv	Признак наличия регулирующего клапана на СВ	Указывается из списка наличие регулирующего клапана на систему вентиляции. 0 (или пусто) - без регулятора 1 - установлен регулятор	ИО
19	Regul_T	Признак наличия регулятора температуры	выбирается из списка наличие регулирующего устройства на систему ГВС. 0 (или пусто) - без регулятора 1 - регулятор температуры 2 - отбор воды из подающего 3 - отбор воды из обратного	ИО
20	T2_r	Расчетная темп. воды на выходе из CO,°C	Задается расчетное значение температуры теплоносителя на выходе из системы отопления, на которое было выполнено проектирование, обычно 70 °C	ИО
21	T3_r	Расчетная темп. воды на входе в CO,°C	Задается расчетное значение температуры теплоносителя на входе в систему	ИО

N⁰	Имя поля	Наименование поля	Информация,	Тип
			записываемая в поле	
			отопления, на которое было выполнено проектирование, обычно 95 °C	
22	Tvso_r	Расчетная темп. внутреннего воздуха для CO,°C	Задается расчетное значение температуры воздуха внутри отапливаемых помещений при проектировании системы отопления, например 20, 18, 16 или 10 °C	ИО
23	Hso_r	Расчетный располагаемый напор в СО, м	Задается расчетное значение располагаемого напора (расчетное сопротивление системы отопления, м) при проектирования системы отопления, например 1 метр вод.ст. для элеваторных схем присоединения и 2, 3, 4 м вод.ст. и т.д. для насосных схем присоединения	ИО
24	Tvsv_r	Расчетная темп. внутреннего воздуха для CB,°C	Задается расчетное значение температуры воздуха внутри отапливаемых помещений при проектировании системы вентиляции, например 20, 18, 16 или 10 °C	ИО
25	Tnsv_r	Расчетная темп. наружного воздуха для CB,°C	Задается расчетное значение температуры наружного воздуха для проектирования системы вентиляции, например -20,-15, -11 °С и т.д	ИО
26		Расчетный располагаемый напор в СВ, м	Задается расчетное значение располагаемого напора (расчетное сопротивление калорифера, м вод.ст.) при проектирования системы вентиляции, например 0.5, 1.0, 1.5 м вод.ст.	ИО
27	Kcirc	Доля циркуляции от расхода на ГВС, %	Задается доля циркуляционного расхода ГВС от среднечасового расхода или средней нагрузки на ГВС в процентах, например 10, 15, 20. Как это сделать смотрите настройки расчетов.	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
28	Hcirc	Потери напора в системе ГВС, м	Задается величина потери напора в системе горячего водоснабжения	ИО
29	Hpump_gvs	Напор насоса в контуре ГВС, м	Задается при необходимости напор повысительного насоса в системе ГВС.	ИО
30	Teire	Температура воды воды в цирк. контуре,°С	Задается температура воды в циркуляционном контуре ГВС. Она на 5-10 °С ниже чем температура воды на ГВС, например 45, 50 °С	ИО
31	Thv	Температура холодной воды,°С	Задается температура холодной воды, например 5, 10 и т.д. °С.	ИО
32	Tgv	Температура воды на ГВС, °С	Задается температура горячей воды, например 60, 65 и т.д. °С.	ИО
33	Pmax_obr	Максимальное давление в обратном тр-де на СО, м	Задается максимально допустимое давление в обратном трубопроводе на СО для конкретного потребителя. Если поле не задано то по умолчанию используется значение из Настройки расчетов.	ИО
34	Pmax_gvs	Максимальное давление на ГВС, м	Задается максимально допустимое давление в обратном трубопроводе на ГВС для конкретного потребителя. Если поле не задано то по умолчанию используется значение из Настройки расчетов.	ИО
35	Thv_t	Текущая температура холодной воды, °С	Используется для поверочного расчета для закрытой системы ГВС. Задается температура холодной (водопроводной) воды на входе 2 контура нижней ступени.	ИО
36	Nsec_so	Количество секций ТО на СО	Указывается количество секций теплообменного аппарата на СО например 1, 2, 3 и т.д.	ИО
37	Hsec_so	Потери напора в 1-й секции ТО на СО, м	Указываются потери напора в одной секции ТО на СО, например 0.5, 1, 1.5 м вод.ст.	ИО

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
38	Ngr_so	Количество параллельных групп ТО на СО	Указывается количество параллельных групп теплообменного аппарата на CO.	ИО
39	T1to_so	Расчетная темп. Сет. Воды на выходе из ТО	Расчетная темп. сетевой воды на выходе из ТО (выход 2ого контура) на систему отопления задается пользователем, например 95 °C	ИО
40	T2r_obr	Расчетная темп. Сет. Воды на выходе из потребителя	Задается пользователем расчетная темп. сет. воды на выходе из потребителя (выход 1ого контура). Если на выходе из СО (по второму контуру) – 70, то эта температура должна быть выше, чем 70, например 75 °C.	ИО
41	Tto_so	Температура воды на выходе из 2 контура ТО, °С	Определяется в результате расчета температура на выходе 2 контору ТО	Р
42	Nel_r	Рекомендуемый номер элеватора	Рекомендуемый номер элеватора определяется в результате наладочного расчета	Р
43	Dsop_r	Рекомендуемый диаметр сопла элеватора, мм	Рекомендуемый диаметр сопла элеватора определяется в результате наладочного расчета	Р
44	U_calc	Расчетный коэффициент смешения	Значение расчетного коэффициента смешения определяется в результате наладочного расчета	Р
45	U_fakt	Фактический коэффициент смешения	Значение фактического коэффициента смешения определяется в результате поверочного расчета	Р
46	Nel_u	Номер установленного элеватора	Задается номер фактически установленного элеватора, например 1, 2, 3.	ИО*
47	Dsop_u	Диаметр установленного сопла элеватора, мм	Задается значение диаметра фактически установленного сопла элеватора, например 3, 5, 7 мм.	ИО*

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
48	T1_t	Температура сетевой воды в под. тр-де, °С	Определяется в результате расчета	Р
49	T2_t	Температура сетевой воды в обр. тр-де, °С	Определяется в результате расчета	Р
50	Gso	Расход сетевой воды на СО, т/ч	Определяется в результате расчета	Р
51	Gso_otn	Относительный расход воды на СО	Определяется в результате расчета относительный расход воды на систему отопления. (Отношение фактического расхода к расчетному).	Р
52	Qso_otn	Относительное количество теплоты на СО	В результате расчета определяется относительное количество тепла на систему отопления (отношение текущей температуры внутреннего воздуха к расчетной)	P
53	T3so_t	Температура воды на входе в СО, °С	Температура воды на входе в систему отопления определяется в результате расчета	Р
54	T2so_t	Температура воды на выходе из CO, °C	Температура воды на выходе из системы отопления определяется в результате расчета	Р
55	Tvso_t	Температура внутреннего воздуха CO, °C	Значение температуры внутреннего воздуха определяется в результате расчета	Р
56	Dshb_so_pod	Диаметр шайбы на под. тр- де перед СО, мм	Значение диаметра шайбы на подающем трубопроводе перед системой отопления определяется в результате наладочного расчета	Р
57	Nshb_so_pod	Количество шайб на под. тр- де перед СО, шт	Количество шайб на подающем трубопроводе перед системой отопления определяется в результате наладочного расчета	Р
58	Dshb_so_obr	Диаметр шайбы на обр. тр- де после СО, мм	Значение диаметра шайбы на обратном трубопроводе после системой отопления	Р

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			определяется в результате наладочного расчета	
59	Nshb_so_obr	Количество шайб на обр. тр- де после СО, шт	Количество шайб на обратном трубопроводе после системой отопления определяется в результате наладочного расчета	Р
60	dHshb_so_pod	Потери напора на шайбе под.тр-да перед СО, м	Значение потерь напора на шайбе, установленной перед СО (подающий трубопровод) определяется в результате наладочного и поверочного расчетов	Р
61	dHshb_so_obr	Потери напора на шайбе обр.тр-да после СО, м	Значение потерь напора на шайбе, установленной после СО (обратный трубопровод) определяется в результате наладочного и поверочного расчетов	Р
62	dHsop	Потери напора на сопле, м	Значение потерь напора на сопле элеватора определяется в результате наладочного и поверочного расчетов	Р
63	Dshb_pod	Диаметр шайбы на вводе на под.тр-де, мм	Задается диаметр шайбы на вводе на подающем трубопроводе	ИО*
64	Nshb_pod	Количество шайб на вводе на под. тр-де, шт	Задается количество шайб на вводе на подающем трубопроводе	ИО*
65	Dshb_obr	Диаметр шайбы на вводе на обр. тр-де, мм	Задается диаметр шайбы на вводе на обратном трубопроводе	ИО*
66	Nshb_obr	Количество шайб на вводе на обр. тр-де, шт	Задается количество шайб на вводе на обратном трубопроводе	ИО*
67	Gsv	Расход сетевой воды на CB, т/ч	Расход сетевой воды на систему вентиляции определяется в результате расчета	Р
68	Gsv_otn	Относительный расход воды на CB, т/ч	Относительный расход воды на систему вентиляции определяется в результате расчета	Р
69	T2sv_t	Темп. воды после системы вентиляции, °С	Температура воды после системы вентиляции	Р

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			определяется в результате расчета	
70	Tvsv_t	Температура внутреннего воздуха CB, °C	Температура внутреннего воздуха в системе вентиляции определяется в результате расчета	Р
71	Dshb_sv	Диаметр шайбы на систему вентиляции, мм	Значение диаметра шайбы на систему вентиляции определяется в результате наладочного расчета	Р
72	Nshb_sv	Количество шайб на систему вентиляции, шт	Количество шайб на систему вентиляции определяется в результате наладочного расчета.	Р
73	Ggv	Расход сетевой воды на ГВС, т/ч	Определяется расход сетевой воды на ГВС в результате наладочного и поверочного расчетов.	Р
74	Geire	Расход сетевой воды в цирк.трубопроводе, т/ч	Определяется расход воды в цирк. трубопроводе ГВС в результате наладочного и повероного расчетов.	Р
75	Dshb_gvs	Диаметр шайбы в циркуляционной линии ГВС, мм	Диаметр шайбы на вводе ГВС определяется в результате наладочного расчета.	Р
76	Nshb_gvs	Количество шайб в циркуляционной линии ГВС, шт.	Количество шайб на вводе ГВС определяется в результате наладочного расчета.	Р
77	dHshb_gvs	Потери напора на шайбе ГВС, м	В результате расчета определяются потери напора на шайбе ГВС.	Р
78	Dshb_circ	Диаметр циркуляционной шайбы на ГВС, мм	Диаметр циркуляционной шайбы на ГВС определяется в результате наладочного расчета.	Р
79	Nshb_circ	Количество циркуляционных шайб на ГВС, шт.	Количество циркуляционных шайб на ГВС определяется в результате наладочного расчета.	Р
80	Dshb_so_pod_u	Диаметр установленной шайбы на под.тр-де перед СО, мм	Задается значение диаметра фактически установленной шайбы на подающем трубопроводе перед СО.	ИО*

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
81	Nshb_so_pod_u	Количество установленных шайб на под.тр-де перед СО, шт	Задается количество установленных шайб на подающем трубопроводе перед CO.	ИО*
82	Dshb_so_obr_u	Диаметр установленной шайбы на обр.тр-де после СО, мм	Задается значение диаметра фактически установленной шайбы на обратном трубопроводе после СО.	ИО*
83	Nshb_so_obr_u	Количество установленных шайб на обр.тр-де после СО, шт	Задается количество установленных шайб на обратном трубопроводе после СО.	ИО*
84	Dshb_sv_u	Диаметр установленной шайбы на систему вентиляции, мм	Задается значение диаметра фактически установленной шайбы на систему вентиляции.	ИО*
85	Nshb_sv_u	Количество установленных шайб на систему вентиляции, шт	Задается количество установленных шайб на систему вентиляции.	ИО*
86	Dshb_gvs_u	Диаметр установленной шайбы в циркуляционной линии ГВС, мм	Задается значение диаметра фактически установленной шайбы на циркуляционной линии ГВС.	ИО*
87	Nshb_gvs_u	Количество установленных шайб в циркуляционной линии ГВС, шт.	Задается количество установленных шайб на ГВС.	ИО*
88	Dshb_circ_u	Диаметр установленной циркуляционной шайбы на ГВС, мм	Задается значение диаметра фактически установленной шайбы на ГВС.	ИО*
89	Nshb_circ_u	Количество установленных шайб в циркуляционной линии ГВС, шт.	Задается количество установленных шайб на циркуляционной линии ГВС.	ИО*
90	Nsec_niz	Количество секций ТО ГВС І ступень	Указывается количество секций теплообменного аппарата 1ой ступени на ГВС например 1, 2, 3 и т.д.	ИО
91	Ngr_niz	Количество паралл. групп ТО ГВС I ступень	указывается количество параллельных групп теплообменного аппарата 1ой ступени на ГВС.	ИО
92	Hsec_niz	Потери напора в одной секции I ступени, м	Указываются потери напора в одной секции ТО 1ой ступени на ГВС, например 0.5, 1, 1.5 м вод.ст.	ИО

Nº	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
93	T11_i_niz	Исп. температура на входе 1 контура I ступени,°С	При наличии результатов замеров, задается испытательные температуры. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата"	ИО
94	T12_i_niz	Исп. температура на выходе 1 контура I ступени,°С	При наличии результатов замеров, задается испытательные температуры. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата"	ИО
95	T21_i_niz	Исп. температура на входе 2 контура I ступени, °С	При наличии результатов замеров, задается испытательные температуры. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата"	ИО
96	T22_i_niz	Исп. температура на выходе 2 контура I ступени,°С	При наличии результатов замеров, задается испытательные температуры. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата"	ИО
97	Q_i_niz	Исп. тепловая нагрузка I ступени, Гкал/час	При наличии результатов замеров, задается испытательные температуры. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата"	ИО
98	Gniz	Расход 1 контура I ступени ТО ГВС, т/ч	Расход сетевой воды, поступающий в первую ступень ТО ГВС определяется в результате расчета	Р
99	G2_niz	Расход 2 контура I ступени ТО ГВС, т/ч	Расход горячей воды во втором контуре,	Р

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			определяется в результате расчета	
100	Q_niz	Тепловая нагрузка I ступени, Гкал/час	Тепловая нагрузка I ступени ТО на ГВС, определяется в результате расчета	Р
101	T11_niz	Температура на входе 1 контура I ступени, °С	Температура на входе 1 контура I ступени ТО на ГВС, определяется в результате расчета	Р
102	T12_niz	Температура на выходе 1 контура I ступени, °С	Температура на выходе 1 контура I ступени ТО на ГВС, определяется в результате расчета	Р
103	T21_niz	Температура на входе 2 контура I ступени,°С	Температура на входе 2 контура I ступени ТО на ГВС, определяется в результате расчета	Р
104	T22_niz	Температура на выходе 2 контура I ступени, °С	Температура на выходе 2 контура I ступени ТО на ГВС, определяется в результате расчета	Р
105	Nsec_verh	Количество секций ТО ГВС II ступень	Указывается количество секций теплообменного аппарата 20й ступени на ГВС например 1, 2, 3 и т.д.	ИО
106	Ngr_verh	Количество паралл. групп ТО ГВС II ступень	указывается количество параллельных групп теплообменного аппарата 20й ступени на ГВС	ИО
107	Hsec_verh	Потери напора в одной секции II ступени, м	Указываются потери напора в одной секции ТО 2ой ступени на ГВС, например 0.5, 1, 1.5 м вод.ст.	ИО
108	T11_i_verh	Исп. температура на входе 1 контура II ступени,°С	При наличии результатов замеров, задается испытательные температуры. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата"	ИО
109	T12_i_verh	Исп. температура на выходе 1 контура II ступени, °С	При наличии результатов замеров, задается испытательные температуры. Об испытательных параметрах ТО см. "Испытательные	ИО

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			параметры теплообменного аппарата"	
110	T21_i_verh	Исп. температура на входе 2 контура II ступени,°С	При наличии результатов замеров, задается испытательные температуры. Об испытательных параметрах ТО см. "Испытательные параметры теплообменного аппарата"	ИО
111	T22_i_verh	Исп. температура на выходе 2 контура II ступени,°С	При наличии результатов замеров, задается испытательные температуры. Об испытательных параметрах ТО см. "Испытательные параметры теплообменного аппарата"	ИО
112	Q_i_verh	Исп. тепловая нагрузка II ступени, Гкал/час	При наличии результатов замеров, задается испытательные температуры. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата"	ИО
113	T11_verh	Температура на входе 1 контура II ступени,°С	Температура на входе 1 контура II ступени ТО на ГВС, определяется в результате расчета	Р
114	T12_verh	Температура на выходе 1 контура II ступени,°С	Температура на выходе 1 контура II ступени ТО на ГВС, определяется в результате расчета	Р
115	T21_verh	Температура на входе 2 контура II ступени,°С	Температура на входе 2 контура II ступени ТО на ГВС, определяется в результате расчета	Р
116	T22_verh	Температура на выходе 2 контура II ступени,°С	Температура на выходе 2 контура II ступени ТО на ГВС, определяется в результате расчета	Р
117	Gverh	Расход 1 контура II ступени ТО ГВС, т/ч	Расход 1 контура II ступени ТО на ГВС, определяется в результате расчета	Р

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
118	G2_verh	Расход 2 контура II ступени ТО ГВС, т/ч	Расход 2 контура II ступени ТО на ГВС, определяется в результате расчета	Р
119	Q_verh	Тепловая нагрузка II ступени, Гкал/час	Тепловая нагрузка II ступени ТО на ГВС, определяется в результате расчета	Р
120	Gset_nal	Расход сетевой воды на СО после наладки, т/ч	В результате расчета определяется расход сетевой воды на систему отопления после наладки	Р
121	Hset_nal	Напор на регуляторе давления СО, м	В результате расчета определяется необходимый располагаемый напор для системы отопления	Р
122	Kreg	Коэффициент пропускной способности РД СО	Задается коэффициент пропускной способности Регулятора Давления (подпора) в СО.	ИО
123	Gsum_pod	Суммарный расход сетевой воды, т/ч	Определяется в результате расчета	Р
124	H_ras	Располагаемый напор на вводе потребителя, м	Определяется в результате расчета	Р
125	H_pod	Напор в подающем трубопроводе, м	Определяется в результате расчета	Р
126	H_obr	Напор в обратном трубопроводе, м	Определяется в результате расчета	Р
127	Ppod	Давление в подающем трубопроводе, м	Определяется в результате расчета	Р
128	Pobr	Давление в обратном трубопроводе, м	Определяется в результате расчета	Р
129	Gut_pot	Утечка из системы теплопотребления, т/ч	Определяется в результате расчета	Р
130	Qut_pot	Потери тепла от утечки, Ккал	Определяется в результате расчета	Р
131	Time	Время прохождения воды от источника, мин	Определяется в результате расчета	Р
132	Dist	Путь, пройденный от источника, м	Определяется в результате расчета	Р
133	ТЪ	Давление вскипания, м	Определяется в результате расчета	Р
134	Hstat	Статический напор, м	Определяется в результате расчета	Р

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
135	Gcon_so	Расчетный расход на СО (констр), т/ч	Задается расчетный расход воды на систему отопления для выполнения конструкторского расчета	ИО***
136	Gcon_sv	Расчетный расход на СВ (констр), т/ч	Задается расчетный расход воды на систему вентиляции для выполнения конструкторского расчета	ИО***
137	Gcon_gv	Расчетный расход на ГВС (констр), т/ч	Задается расчетный расход воды на систему ГВС для выполнения конструкторского расчета	ИО***
138	Hcon_ras	Располагаемый напор на вводе (констр), м	Задается располагаемый напор для выполнения конструкторского расчета	ИО***

21.4. Насосная станция

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
1	Name	Наименование насосной станции	Записывается наименование насосной станции или насоса, например, насосная станция №1, и т.д.	ИН
2	Nist	Номер источника	Определяется в результате расчета	Р
3	H_geo	Геодезическая отметка, м	Задается отметка оси (верха) трубы, на которой установлен данный насос. Она может автоматически быть считана со слоя рельефа («Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»).	ИО
4	Type_pod	Способ задания насоса на подающем	Выбирается из списка способ задания насоса на подающем трубопроводе. 0 (или пусто) - по умолчанию 1 - характеристикой 2 - напором на насосе	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			 3 - напор после насоса (с учетом геодезической отметки) 	
			4 - давление после насоса	
5	Mark_pod	Марка насоса на подающем	Выбирается из справочника марка насоса установленного на подающем трубопроводе. «Справочник по насосам»	ИО
6	Npod	Число насосов на подающем тр-де	Указывается число параллельно работающих насосов одинаковых марок, установленных на подающем трубопроводе	ИО
7	Hpod	Напор насоса на подающем трубопроводе, м	Задается напор, развиваемый насосом на подающем трубопроводе. Используется в том случае если способ задания насоса указан как 2 (напором на насосе) или когда не указана марка насоса и способ задания не указан. Если насос повышает напор, то значение записывается со знаком плюс, если понижает напор, то со знаком минус, например +30, -40 м.	ИО
8	Pr_pod	Напор после насоса на подающем, м	Задается пользователем. В случае если способ задания насоса указан З (напор после насоса), то указывается значение напора после насоса с учетом геодезической отметки. Если способ задания насоса 4 (давление после насоса), то указывается значение напора после насоса, без учета геодезии.	ИО
9	Hin_pod	Напор на входе в насосную в под. трубопр- де, м	Определяется в результате расчета	Р

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
10	Hout_pod	Напор на выходе из насосной в под. трубопр- де, м	Определяется в результате расчета	Р
11	Pin_pod	Давление в подающем тр- де перед узлом, м	Определяется в результате расчета	Р
12	Pout_pod	Давление в подающем тр- де после узла, м	Определяется в результате расчета	Р
13	Gpod	Расход воды в подающем трубопроводе, т/ч	Определяется в результате расчета	Р
14	Tpod	Температура воды в подающем трубопроводе, °С	Определяется в результате расчета	Р
15	Type_obr	Способ задания насоса на обратном	Выбирается из списка способ задания насоса на подающем трубопроводе. 0 (или пусто) - по умолчанию 1 - характеристикой 2 - напором на насосе 3 - напор после насоса (с учетом геодезической отметки) 4 - давление после насоса	ИО
16	Mark_obr	Марка насоса на обратном	Выбирается из справочника марка насоса установленного на обратном трубопроводе. «Справочник по насосам»	ИО
17	Nobr	Число насосов на обратном тр-де	Указывается число параллельно работающих насосов одинаковых марок, установленных на обратном трубопроводе	ИО
18	Hobr	Напор насоса на обр. трубопр-де, м	Задается напор, развиваемый насосом на обратном трубопроводе. Используется в том случае если способ задания насоса указан как 2 (напором на насосе) или когда не указана марка насоса и способ задания не указан. Если насос повышает напор,	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			то значение записывается со знаком плюс, если понижает напор, то со знаком минус, например +30, -40 м.	
19	Pr_obr	Напор перед насосом на обратном, м	Задается пользователем. В случае если способ задания насоса указан 3 (напор после насоса), то указывается значение напора перед насосом с учетом геодезической отметки. Если способ задания насоса 4 (давление после насоса), то указывается значение напора перед насосом, без учета геодезии.	ИО
20	Hin_obr	Напор на входе в насосную в обр. трубопр- де, м	Определяется в результате расчета	Р
21	Hout_obr	Напор на выходе из насосной в обр. трубопр- де, м	Определяется в результате расчета	Р
22	Pout_obr	Давление в обратном тр- де после узла, м	Определяется в результате расчета	Р
23	Pin_obr	Давление в обратном тр- де перед узлом, м	Определяется в результате расчета	Р
24	Gobr	Расход воды в обратном трубопроводе, т/ч	Определяется в результате расчета	Р
25	Tobr	Температура воды в обратном трубопроводе, °C	Определяется в результате расчета	Р
26	Time	Время прохождения воды от источника, мин	Определяется в результате расчета	Р
27	Dist	Путь, пройденный от источника, м	Определяется в результате расчета	Р
28	Tb	Давление вскипания, м	Определяется в результате расчета	Р
29	Hstat	Статический напор, м	Определяется в результате расчета	Р
30	Hstat_out	Статический напор на выходе, м	Определяется в результате расчета	Р

21.5. Запорная арматура

Имя поля	Наименование поля	Информация,	Тип
		записываемая в поле	
Name	Наименование	Задается пользователем,	ИН
	арматуры	например Задвижка №	
		22	
Nist	Номер источника	Определяется в	Р
		результате расчета	
H_geo	Геодезическая отметка,	Задается отметка оси	ИО
	М	(верха) трубы, на	
		которой установлено	
		данное запорное или	
		регулирующее	
		устроиство. Она может	
		считана со споя рельефа	
		(«Автоматическое	
		занесение	
		геодезических отметок	
		объектов сети со слоя	
		рельефа»).	
Mark_pod	Марка задвижки на	Выбирается из	ИО
	подающем	справочника марка	
		установленной	
		запорной арматуры на	
		трубопроволе	
		Подробнее о работе со	
		справочником	
		«Справочник по	
		запорной арматуре».	
Dpod	Условный диаметр на	Задается пользователем	ИО
	подающем, м	диаметр установленной	
		на подающем	
		труоопроводе запорнои	
		арматуры, например 0.1,	
Der nod			ИО
rei_pou	степень открытия на	степень открытия	ИО
	подающем	арматуры	
		установленной на	
		подающем	
		трубопроводе.	
		Сопротивление	
		соответствующее	
		степени открытия	
		можно просмотреть	
1	1	в справочнике по	
	Имя поля Name Nist H_geo Mark_pod Dpod Per_pod	Имя поля Наименование поля Name Наименование арматуры Nist Номер источника H_geo Геодезическая отметка, м Mark_pod Марка задвижки на подающем Dpod Условный диаметр на подающем, м Per_pod Степень открытия на подающем	Имя поля Наименование поля Информация, записываемая в поле Name Наименование арматуры Задается пользователем, например Задвизжка № 22 Nist Номер источника Определяется в результате расчета H_geo Геодезическая отметка, м Задается отметка оси верха) трубы, на икрай иматически Задается отметка оси верха) трубы, на икрай Задается отметка оси си сечитака со слоя рельефа («Автоматически быть считака со слоя рельефа). Mark_pod Марка задвижки на подающем Выбирается из справочника марка уставовленной запорной арматуры на подающем Dpod Условный диаметр на подающем, м Задается пользователем диаметр установленной запорной арматуры, на подающем, м Per_pod Степень открытия на подающем Задается пользователем гепень открытия адается пользователем гепень открытия адается пользователем гепень открытия адается пользователем гепень открытия адается пользователем гепень открытия адается пользователем гепень открытия адается пользователем гепень открытия арматуры

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			при выборе марки («Справочник по запорной арматуре»)	
7	Mark_obr	Марка задвижки на обратном	Выбирается из справочника марка установленной запорной арматуры на обратном трубопроводе. Подробнее о работе со справочником «Справочник по запорной арматуре».	ИО
8	Dobr	Условный диаметр на обратном, м	Задается пользователем диаметр установленной на обратном трубопроводе запорной арматуры, например 0.1, 0.2 м	ИО
9	Per_obr	Степень открытия на обратном	Задается пользователем степень открытия арматуры установленной на обратном трубопроводе. Сопротивление соответствующее степени открытия можно просмотреть в Справочнике по запорной арматуре при выборе марки («Справочник по запорной арматуре»)	ИО
10	H_ras	Располагаемый напор, м	Определяется в результате расчета	Р
11	Hout	Располагаемый напор на выходе, м	Определяется в результате расчета	Р
12	H_pod	Напор в подающем трубопроводе, м	Определяется в результате расчета	Р
13	Hout_pod	Напор после узла в подающем, м	Определяется в результате расчета	Р
14	H_obr	Напор в обратном трубопроводе, м	Определяется в результате расчета	Р
15	Hout_obr	Напор после узла в обратном, м	Определяется в результате расчета	P
16	Tpod	Температура воды в под. тр-де,°С	Определяется в результате расчета	P
ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
17	Tobr	Температура воды в обр. тр-де, °С	Определяется в результате расчета	Р
18	Ppod	Давление в подающем трубопроводе, м	Определяется в результате расчета	Р
19	Pout_pod	Давление после узла в подающем, м	Определяется в результате расчета	Р
20	Pobr	Давление в обратном трубопроводе, м	Определяется в результате расчета	Р
21	Pout_obr	Давление после узла в обратном, м	Определяется в результате расчета	Р
22	Time	Время прохождения воды от источника, мин	Определяется в результате расчета	Р
23	Dist	Путь, пройденный от источника, м	Определяется в результате расчета	Р
24	Tb	Давление вскипания, м	Определяется в результате расчета	Р
25	Hstat	Статический напор, м	Определяется в результате расчета	Р
26	Hstat_out	Статический напор на выходе, м	Определяется в результате расчета	Р

21.6. Участок тепловой сети

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
1	Nist	Номер источника	Определяется в результате расчета	Р
2	Owner	Балансодержатель	Указывается пользователем имя владельца (балансодержателя) участка тепловой сети, например МУП Теплоэнерго. Используется в расчетах тепловых потерь суммарно за год.	ИО****
3	Begin_uch	Наименование начала участка	Задается наименование начала участка (наименование узла, тепловой камеры, с которой данный участок начинается), например ТК-15. После наличии наименований узловых	ИН

№	Имя поля	Наименование поля	Информация,	Тип
			записываемая в поле	
			объектов, возможно автоматическое заполнение названия начала и конца участка. Подробнее об этом «Автоматическое занесение начала и конца участков»	
4	End_uch	Наименование конца участка	Задается наименование конца участка (наименование узла, тепловой камеры, с которой данный участок начинается), например ТК-16. После наличии наименований узловых объектов, возможно автоматическое заполнение названия начала и конца участка. Подробнее об этом «Автоматическое занесение начала и конца участков»	ИН
5	L	Длина участка, м	Задается длина участка в плане с учетом длины П- образных компенсаторов, например 100, 150 м. Данное поле можно заполнить автоматически, взяв длину участка с карты в масштабе. «Автоматическое занесение длины с карты»	ИО
6	Dpod	Внутренний диаметр подающего трубопровода, м	Задается внутренний диаметр подающего трубопровода, например 0.05, 0.1, 0.15, 1,2 м	ИО
7	Dobr	Внутренний диаметр обратного трубопровода, м	Задается внутренний диаметр обратного трубопровода, например 0.05, 0.1, 0.15, 1,2 м	ИО
8	Zpod	Сумма коэф. местных сопротивлений под. тр-да	Задается сумма коэффициентов местных сопротивлений подающего трубопровода, например 4, 8. Может быть автоматически	ИО

№	Имя поля	Наименование поля	Информация,	Тип
			записываемая в поле	
			записана при работе со	
			справочником по местным	
			сопротивлениям.	
9	Zpod str	Местные сопротивления	В случае, если сумма	ИО
	1 –	под.тр-да	коэффициентов местных	
			сопротивлений на	
			подающем трубопроводе	
			неизвестна, а известны	
			количество и виды	
			местных сопротивлений,	
			то с помощью данного	
			поля можно рассчитать	
			сумму коэффициентов	
			местных сопротивлений.	
			Подробнее «Справочник	
			по местным	
			сопротивлениям»	
10	Zobr	Сумма коэф. местных	Задается сумма	ИО
		сопротивлений обр. тр-да	коэффициентов местных	
			сопротивлений	
			обратногого	
			трубопровода, например	
			4, 8. Задается сумма	
			коэффициентов местных	
			сопротивлении	
			нодающего грубопровода,	
			быть автоматически	
			записана при работе со	
			справочником по местным	
			сопротивлениям.	
11	Zohr str	Местные сопротивления	В случае если сумма	ИО
11	2001_30	обр тр-ла	коэффициентов местных	110
			сопротивлений на	
			обратном трубопроволе	
			неизвестна, а известны	
			количество и виды	
			местных сопротивлений,	
			то с помощью данного	
			поля можно рассчитать	
			сумму коэффициентов	
			местных сопротивлений.	
			Подробнее «Справочник	
			по местным	
			сопротивлениям»	
12	Ke_pod	Шероховатость	Задается значение	ИО
		подающего трубопровода,	шероховатости	
		MM	подающего трубопровода,	
			например 0.5, 1, 2,	

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			3, 4 мм и т.д. Для новых стальных труб коэффициент шероховатости принимается в соответствии со СНиП 0.5 мм	
13	Ke_obr	Шероховатость обратного трубопровода, мм	Задается значение шероховатости обратного трубопровода, например 0.5, 1, 2, 3, 4 мм и т.д. Для новых стальных труб коэффициент шероховатости принимается в соответствии со СНиП 0.5 мм.	ИО
14	Zarost_pod	Зарастание подающего трубопровода, мм	Задается пользователем величина зарастания подающего трубопровода, например 5, 10, 15 мм. Зарастание трубопровода приводит к уменьшению внутреннего диаметра трубопровода и резкому увеличению гидравлических потерь	ИО
15	Zarost_obr	Зарастание обратного трубопровода, мм	Задается пользователем величина зарастания подающего трубопровода, например 5, 10, 15 мм. Зарастание трубопровода приводит к уменьшению внутреннего диаметра трубопровода и резкому увеличению гидравлических потерь	ИО
16	Kz_pod	Коэффициент местного сопротивления под.тр-да	Если местные сопротивления неизвестны, то в этом случае пользователь может увеличить действительную длину трубопровода добавлением эквивалентной длины, характеризующей потери в местных сопротивлениях. Задается	ИО

№	Имя поля	Наименование поля	Информация,	Тип
			записываемая в поле	
			коэффициент местного	
			сопротивления для	
			подающего трубопровода,	
			например 1.1 или	
			1.2. В этом случае	
			действительная длина	
			участка трубопровода	
			будет увеличена на 10 или	
			20 % соответственно.	
17	Kz_obr	Коэффициент местного	Если местные	ИО
		сопротивления обр.тр-да	сопротивления	
			неизвестны, то в	
			этом случае пользователь	
			может увеличить	
			действительную длину	
			трубопровода	
			добавлением	
			эквивалентной длины,	
			характеризующей потери	
			в местных	
			сопротивлениях. Задается	
			коэффициент местного	
			сопротивления для	
			обратного трубопровода,	
			12 P 2 P 2	
			1.2. В этом случае	
			деиствительная длина	
			булет увеличена на 10 или	
			20 % соответственно	
10	Snod	Сопратиристис		NO
10	spou		задается пользователем	ИО
		m/(1)	полающего трубопровода	
		1) 2	Подающего грубопровода.	
			лля уточнения	
			математической молени	
			в случае если были	
			проведены замеры	
			расхода теплоносителя и	
			лавления в начале и конце	
			участка сети.	
19	Sobr	Сопротивление обратного	Задается пользователем	ИО
		тр-да, м/(т/ч)*2	величина сопротивления	
			обратного трубопровода.	
			Данная величина задается	
			для уточнения	
			математической модели	
			в случае, если были	
			проведены замеры	

N⁰	Имя поля	Наименование поля	Информация,	Тип
			записываемая в поле	
			расхода теплоносителя и	
			давления в начале и конце	
			участка сети.	
20	StatZone	Разделитель зон	Задается признак	ИО
		статического напора	разделения данным	
		*	участком сети на зоны	
			с разным статическим	
			напором:	
			0	
			0 или пусто - разделение	
			на зоны отсутствует;	
			1 - от начала участка	
			начинается новая зона	
21	Dualitad			UO**
21	Ргоктац	вид прокладки тепловои	вид проклади тепловои	ИО
		ССТИ	выпалающего списка.	
			выпадающего еписка.	
			1 - надземная;	
			2 - подземная канальная;	
			3 - полземная	
			бесканальная:	
			, , , , , , , , , , , , , , , , , , , ,	
			4 - подвальная.	
22	Norma	Нормативные потери в	Выбирается из списка,	ИО**
		тепловой сети (1-5)	по нормативам какого	
			года следует считать	
			нормативные тепловые	
			потери:	
			1 - 1959 год;	
			2 - 1988 год;	
			3 - 1997 год;	
			4 - 2003 год.	
			5 - КТМ 204 (Украина)	
23	Use_pod	Период работы	Выбирается	ИО***
		подающего тр-да	пользователем из списка	
			период работы	
			трубопровода:	
			0 (Пусто) - Весь год.	
			1 - Зимний период.	
			2 - Летний период.	

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
24	Use_obr	Период работы обратного тр-да	Выбирается пользователем из списка период работы трубопровода: 0 (Пусто) - Весь год. 1 - Зимний период. 2 - Летний периол.	ИО***
25	Kpoprav	Поправочный коэфф. на нормы тепловых потерь для подающего тр-да	Задается пользователем по результатам температурных испытаний, если температурные испытания не проводились, поправочный коэффициент на нормы тепловых потерь принимается равным 1.0	ИО**
23	Kpop_obr	Поправочный коэфф. на нормы тепловых потерь для обратного тр-да	Задается пользователем по результатам температурных испытаний, если температурные испытания не проводились, поправочный коэффициент на нормы тепловых потерь принимается равным 1.0	ИО**
24	Grunt	Вид грунта	Выбирается из списка вид грунта. ????	ИО**
25	Hzal	Глубина заложения трубопровода, м	Глубина заложения трубопровода от оси до поверхности земли задается пользователем, например 0.8, 1.0, 1.2 м	ИО**
26	Izol_pod	Теплоизоляционный материал под.тр-да (1-39)	Выбирается из списка теплоизоляционный материал подающего трубопровода. ????	ИО**
27	Izol_obr	Теплоизоляционный материал обр.тр-да (1-39)	Выбирается из списка теплоизоляционный материал обратного трубопровода. ????	ИО**
28	Wizol_pod	Толщина изоляции подающего тр-да, м	Толщина изоляции подающего трубопровода	ИО**

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			задается пользователем, например 0.07, 0.1 м	
29	Wizol_obr	Толщина изоляции обратного тр-да, м	Толщина изоляции обратного трубопровода задается пользователем, например 0.07, 0.1 м	ИО**
30	Tex_pod	Техническое состояние изоляции под.тр-да (1-8)	Выбирается из выпадающего списка состояние теплоизоляционного материала подающего трубопровода. При выполнении расчетов принимаются средние значения поправок к коэффициентам теплопроводности теплоизоляционных материалов приведенных в приложении ????	ИО**
31	Tex_obr	Техническое состояние изоляции обр.тр-да (1-8)	Выбирается из выпадающего списка состояние теплоизоляционного материала обратного трубопровода. При выполнении расчетов принимаются средние значения поправок к коэффициентам теплопроводности теплоизоляционных материалов приведенных в приложении ????.	ИО**
32	S	Расстояние между осями трубопроводов, м	Задается пользователем расстояние между осями трубопроводов, например 0.5, 1.0 м	ИО**
33	Hkanal	Высота канала, м	Задается пользователем в зависимости от марки канала и условного диаметра труб, например, для канала марки КЛ 90-45 при условном диаметре подающей и обратной трубы 0.1 м высота канала 0.63 м (Приложение Е,	ИО**

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			Основные типы сборных железобетонных каналов для тепловой сети)	
34	Wkanal	Ширина канала, м	Задается пользователем в зависимости от марки канала и условного диаметра труб в соответствии с (Приложение Е, Основные типы сборных железобетонных каналов для тепловой сети), например, для канала марки КЛ 90-45 при условном диаметре подающей и обратной трубы 0.1 м ширина канала 1.15 м	ИО**
35	Q1_pod	Дополнительные потери тепла под.тр-да, ккал	Наряду с тепловыми потерями через изоляцию, имеется возможность задавать дополнительные фиксированные тепловые потери. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников	ИО**
36	Q1_obr	Дополнительные потери тепла обр.тр-да, ккал	Наряду с тепловыми потерями через изоляцию, имеется возможность задавать дополнительные фиксированные тепловые потери. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников	ИО**
37	Gpod	Расход воды в подающем трубопроводе, т/ч	Определяется в результате расчета	Р
38	Gobr	Расход воды в обратном трубопроводе, т/ч	Определяется в результате расчета	Р
39	dH_pod	Потери напора в подающем трубопроводе, м	Определяется в результате расчета	Р

Таблицы баз данных

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
40	dH_obr	Потери напора в обратном трубопроводе, м	Определяется в результате расчета	Р
41	dHud_pod	Удельные линейные потери напора в под.тр-де, мм/м	Определяется в результате расчета	Р
42	dHud_obr	Удельные линейные потери напора в обр.тр-де, мм/м	Определяется в результате расчета	Р
43	Vpod	Скорость движения воды в под.тр-де, м/с	Определяется в результате расчета	Р
44	Vobr	Скорость движения воды в обр.тр-де, м/с	Определяется в результате расчета	Р
45	Gut_pod	Величина утечки из подающего трубопровода, т/ч	Определяется в результате расчета	Р
46	Gut_obr	Величина утечки из обратного трубопровода, т/ч	Определяется в результате расчета	Р
47	Qpot_pod	Тепловые потери в подающем трубопроводе, ккал/ч	Определяется в результате расчета	Р
48	Qpot_obr	Тепловые потери в обратном трубопроводе, ккал/ч	Определяется в результате расчета	Р
49	Qud_sg_pod	Среднегод.уд.тепл.потери под.тр-да, ккал/ч*м	Определяется в результате расчета	Р
50	Qud_sg_obr	Среднегод.уд.тепл.потери обр.тр-да, ккал/ч*м	Определяется в результате расчета	Р
51	Qn_pot_pod	Норм.эксп.тепл.потери под.тр-да, ккал/час*м2*С	Определяется в результате расчета	Р
52	Qn_pot_obr	Норм.эксп.тепл.потери обр.тр-да, ккал/час*м2*С	Определяется в результате расчета	Р
53	Tbeg_pod	Температура в начале участка под.тр-да,°С	Определяется в результате расчета	Р
54	Tend_pod	Температура в конце участка под.тр-да,°С	Определяется в результате расчета	Р
55	Tbeg_obr	Температура в начале участка обр.тр-да,°С	Определяется в результате расчета	Р
56	Tend_obr	Температура в конце участка обр.тр-да,°С	Определяется в результате расчета	Р
57	Drek_pod	Диаметр подающего тр-да (конструкторский), м	Определяется в результате конструкторского расчета	Р
58	Drek_obr	Диаметр обратного тр-да (конструкторский), м	Определяется в результате конструкторского расчета	Р

Nº	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
59	Ke_con_pod	Шероховатость под. тр-да (конструкторский), мм	Задается коэффициент шероховатости подающего трубопровода (только при выполнении Конструкторского расчета тепловой сети). Для новых стальных труб коэффициент шероховатости принимается в соответствии со СНиП 0.5 мм	ИО***
60	Ke_con_obr	Шероховатость обр. тр-да (конструкторский), мм	Задается коэффициент шероховатости обратного трубопровода (только при выполнении Конструкторского расчета тепловой сети). Для новых стальных труб коэффициент шероховатости принимается в соответствии со СНиП 0.5 мм	ИО***
61	Vopt_pod	Оптимальная скорость в подающем (конструкторский), м/с	Задается, при проведении конструкторского расчета по скоростям, оптимальная скорость для подающего трубопровода данного участка	ИО***
62	Vopt_obr	Оптимальная скорость в обратном (конструкторский), м/с	Задается, при проведении конструкторского расчета по скоростям, оптимальная скорость для обратного трубопровода данного участка	ИО***
63	dHud_con_pod	Удельные линейные потери подающего (конструкторский), мм/м	Задается, при проведении конструкторского расчета по удельным потерям, удельные линейные потери для подающего трубопровода данного участка	ИО***
64	dHud_con_obr	Удельные линейные потери обратного (конструкторский), мм/м	Задается, при проведении конструкторского расчета по удельным потерям, удельные линейные потери для обратного	ИО***

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			трубопровода данного участка	
64	Tubes	Сортамент	Указывается набор диаметров, которые будут подбираться при проведении конструторского расчета. Подробнее «Справочник по трубам»	ИО***

21.7. Дросселирующий узел

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
1	Name	Наименование дросселирующего узла	Заполняется пользователем, например дросселирующий узел ДУ-22 и т.д.	ИН
2	Nist	Номер источника	Определяется в результате расчета	Р
3	H_geo	Геодезическая отметка, м	Задается отметка оси (верха) трубы, на котором находится данный узел. Она может автоматически быть считана со слоя рельефа («Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»).	ИО
4	Dshb_pod	Диаметр шайбы на байпасе в под. тр-де, мм	Для режима работы Устанавливаемая шайба указывается диаметр шайбы на байпасе в подающем трубопроводе в мм. Для режима работы Вычисляемая шайба определяется в результате наладочного расчета.	ИО (Р)
5	Nshb_pod	Количество шайб на байпасе в подающем тр- де, шт.	Для режима работы Устанавливаемая шайба указывается количество шайб на байпасе в подающем трубопроводе в мм. Для режима работы Вычисляемая	ИО (Р)

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			шайба определяется в результате наладочного расчета.	
6	Dshb_obr	Диаметр шайбы на байпасе в обр. тр-де, мм	Для режима работы Устанавливаемая шайба указывается диаметр шайбы на байпасе в обратном трубопроводе в мм. Для режима работы Вычисляемая шайба определяется в результате наладочного расчета.	ИО (Р)
7	Nshb_obr	Количество шайб на байпасе в обратном тр-де, шт.	Для режима работы Устанавливаемая шайба указывается количество шайб на байпасе в обратном трубопроводе в мм. Для режима работы Вычисляемая шайба определяется в результате наладочного расчета.	ИО (Р)
8	Dbp_pod	Диаметр байпаса на подающем трубопроводе, м	Задается пользователем, например 0.05, 0.1 м, и т.д.	ИО
9	Lbp_pod	Длина байпаса на подающем трубопроводе, м	Задается пользователем, например 3, 5 м, и т.д.	ИО
10	Dbp_obr	Диаметр байпаса на обратном трубопроводе, м	Задается пользователем, например 0.05, 0.1 м, и т.д.	ИО
11	Lbp_obr	Длина байпаса на обратном трубопроводе, м	Задается пользователем, например 3, 5 м, и т.д.	ИО
12	Zbp_pod	Сумма коэф. местных сопр. на байпасе в под. тр- де	Задается сумма коэффициентов местных сопротивлений подающего трубопровода, например 4, 8 и т.д. (Приложение D, Коэффициенты местных сопротивлений на участке трубопровода)	ИО
13	Zbp_obr	Сумма коэф. местных сопр. на байпасе в обр. тр- де	Задается сумма коэффициентов местных сопротивлений обратного трубопровода, например 4, 8 и т.д. (Приложение D,	ИО

	поля информация, гип
	коэффициенты местных сопротивлений на
	участке трубопровода)
14 Ке bp Шероховатость	байпаса, Задается значение ИО
	шероховатости байпаса,
	например 0.5, 1, 2,
	3, 4 мм и т.д. Для
	новых стальных труб
	принимается в
	соответствии со СНиП 0.5
	ММ.
15 Hzapas Запас напора, м	Задается пользователем ИО
	запас напора на шайбе,
16 Regul_G Cnoco6 дросселя	ирования Задается цифрами: ИО
	0 (пусто) - автоматическая
	установка
	1 - только на подающем
	тр-де.
	2 - только на обратном тр-
17 Н Регушируеми й	
напор, м (расход	ц, т/ч) значение регулируемого
	параметра регулятора
	давления «до себя»,
	«после себя» или
	располагаемый напор.
	например, 10, 20,
	40 м. В случае
	установки регулятора
	расхода задается значение
	например, 100 т/ч.
18 Кгед Пропускная сп	особность Задается пользователем ИО
регулятора	пропускная способность
	регулирующего
	устроиства
19 Deq Диаметр экви	валентной Определяется в результате Р
Располагаемый	напор до определяется в результате р
21 Ношт Распонатарани й	
После узла, м	pacyera

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
22	Hin_pod	Напор в подающем тр-де перед узлом, м	Определяется в результате расчета	Р
23	Hout_pod	Напор в подающем тр-де после узла, м	Определяется в результате расчета	Р
24	Hin_obr	Напор в обратном тр-де перед узлом, м	Определяется в результате расчета	Р
25	Hout_obr	Напор в обратном тр-де после узла, м	Определяется в результате расчета	Р
26	dHshb_pod	Потери напора на шайбе в под.тр., м	Определяется в результате расчета	Р
27	dHshb_obr	Потери напора на шайбе в обр.тр., м	Определяется в результате расчета	Р
28	Pin_pod	Давление в подающем тр- де перед узлом, м	Определяется в результате расчета	Р
29	Pout_pod	Давление в подающем тр- де после узла, м	Определяется в результате расчета	Р
30	Pin_obr	Давление в обратном тр- де перед узлом, м	Определяется в результате расчета	Р
31	Pout_obr	Давление в обратном тр- де после узла, м	Определяется в результате расчета	Р
32	Time	Время прохождения воды от источника, мин	Определяется в результате расчета	Р
33	Dist	Путь, пройденный от источника, м	Определяется в результате расчета	Р
34	Тb	Напор критический (вскипания), м	Определяется в результате расчета	Р
35	Hstat	Статический напор на входе, м	Определяется в результате расчета	Р
36	Hstat_out	Статический напор на выходе, м	Определяется в результате расчета	Р
37	Tpod	Температура воды в подающем трубопроводе, °C	Определяется в результате расчета	Р
38	Tobr	Температура воды в обратном трубопроводе, °С	Определяется в результате расчета	Р

21.8. Центральный тепловой пункт

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
1	Adres	Адрес	Задается пользователем, например ул. Федосеенко д.14	ИН
2	Name	Наименование узла	Задается пользователем, например ЦТП-23, и т.д.	ИН
3	Nist	Номер источника	Определяется в результате расчета	Р
4	H_geo	Геодезическая отметка, м	Задается отметка оси (верха) трубы, на котором находится данный узел. Она может автоматически быть считана со слоя рельефа («Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»).	ИО
5	N_schem	Номер схемы подключения ЦТП	Выбирается схема присоединения узла ввода. Схемы приведены в приложении Приложение А, Схемы подключения.	ИО
6	T1_r	Расчетная температура на входе 1 контура, °С	Задается расчетное значение температуры теплоносителя на входе в первый контур, например 150, 130, 110 или 95°С	ИО
7	T1to_so	Расчетная температура на выходе 1 контура, °С	Задается расчетное значение температуры теплоносителя на выходе из первого контура, например 75, 80 °C	ИО
8	T2_r	Расчетная температура на входе 2 контура, °С	Задается расчетное значение температуры теплоносителя на входе во второй контур, например 70°С	ИО
9	T3_r	Расчетная температура на выходе 2 контура, °С	Задается расчетное значение температуры теплоносителя на выходе из второго контура, например 95°С	ИО

№	Имя поля	Наименование поля	Информация,	Тип
10	Hnz_ras	Располагаемый напор второго контура, м	Записываемая в поле При независимом подключении системы отопления задается располагаемый напор	ИО
11	Hnz_obr	Напор в обратнике	второго контура При независимом	ИО
		второго контура, м	подключении системы отопления задается напор в обратном трубопроводе второго контура. Расчетный напор в обратном трубопроводе задается с учетом геодезической отметки расположения ЦТП, например геодезическая отметка 50 метров, напор в обратном трубопроводе 20 метров, тогда расчетный напор в обратном трубопроводе равен 50 + 20 = 70 метров.	
12	Nsec_so	Количество секций ТО на СО	Задается пользователем количество секций ТО, например, 1, 2, 3 и т.д.	ИО
13	Hsec_so	Потери напора в 1-й секции ТО на СО, м	Задаются пользователем потери напора в теплообменном аппарате, например, 0.1, 0.2, 0.3, м.	ИО
14	Ngr_so	Количество параллельных групп ТО на СО	Задается количетсво параллельных групп ТО, например, 1, 2, 3 и т.д.	ИО
15	Nel_r	Рекомендуемый номер группового элеватора	Определяется в результате наладочного расчета	Р
16	Dsop_r	Рекомендуемый диаметр сопла элеватора, мм	Определяется в результате наладочного расчета	Р
17	U_calc	Расчетный коэффициент смешения	Определяется в результате наладочного расчета	Р
18	U_fakt	Фактический коэффициент смешения	Определяется в результате поверочного расчета	Р
19	Nel_u	Номер установленного элеватора	Задается номер установленного группового элеватора, например 1, 2, 3, 4, 5, 6, 7.	ИО*
20	Dsop_u	Диаметр установленного сопла элеватора, мм	Задается значение установленного диаметра	ИО*

Nº	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			сопла элеватора, например 3, 5, 7, 9 мм.	
21	dHsoplo	Потери напора в сопле элеватора, м	Определяется в результате расчета	Р
22	T1_t	Температура на входе 1 контура, °С	Определяется в результате расчета	Р
23	T2_t	Температура на выходе 1 контура, °С	Определяется в результате расчета	Р
24	T3so_t	Температура на выходе 2 контура, °С	Определяется в результате расчета	Р
25	T2so_t	Температура на входе 2 контура, °С	Определяется в результате расчета	Р
26	Dshb_pod	Диаметр шайбы на под.тр- де, мм	Определяется в результате расчета диаметр шайбы на подающем тр-де (1 контур)	Р
27	Nshb_pod	Количество шайб на под. тр-де, шт	Определяется в результате расчета количество шайб на подающем тр-де (1 контур)	Р
28	Dshb_obr	Диаметр шайбы на обр. тр-де, мм	Определяется в результате расчета диаметр шайбы на обратном тр-де (1 контур)	Р
29	Nshb_obr	Количество шайб на обр. тр-де, шт	Определяется в результате расчета количество шайб на обратном тр-де (1 контур)	Р
30	Dshb_pod_u	Диаметр установленной шайбы на под.тр-де, мм	Задается пользователем диаметр установленной шайбы на подающем тр-де 1 контура.	ИО*
31	Nshb_pod_u	Количество установленных шайб на под.тр-де, шт	Задается пользователем количество установленных шайб на подающем тр-де 1 контура.	ИО*
32	Dshb_obr_u	Диаметр установленной шайбы на обр.тр-де, мм	Задается пользователем диаметр установленной шайбы на обратном тр-де 1 контура.	ИО*
33	Nshb_obr_u	Количество установленных шайб на обр.тр-де, шт	Задается пользователем количество установленных шайб на обратном тр-де 1 контура.	ИО*

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
34	dHshb_pod	Потери напора на шайбе в под. тр-де, м	Определяется в результате расчета	Р
35	dHshb_obr	Потери напора на шайбе в обр. тр-де, м	Определяется в результате расчета	Р
36	Dshb_gvs	Диаметр шайбы на ГВС, мм	Определяется в результате расчета диаметр шайбы на ГВС (1 контур).	Р
37	Nshb_gvs	Количество шайб на ГВС, шт.	Определяется в результате расчета количество шайб на ГВС (1 контур).	Р
38	Dshb_gvs_u	Диаметр установленной шайбы на ГВС, мм	Задается пользователем диаметр установленной шайбы на ГВС (1 контур)	ИО*
39	Nshb_gvs_u	Количество установленных шайб на ГВС, шт	Задается пользователем количество установленных шайб на ГВС (1 контур)	ИО*
40	dHshb_gvs	Потери напора на шайбе ГВС, м	Определяется в результате расчета	Р
41	Thv	Температура холодной воды,°С	Задается пользователем температура холодной водопроводной воды	ИО
42	Tgv	Температура воды на ГВС, °С	Задается температура воды поступающей в систему горячего водоснабжения.	ИО
43	Hgv2_ras	Располагаемый напор 2 контура ГВС, м	Для закрытых систем горячего водоснабжения задается располагаемый напор во втором контуре	ИО
44	Hgv2_obr	Напор в обратнике 2 контура ГВС, м	Для закрытых систем горячего водоснабжения задается напор в циркуляционном трубопроводе во второго контура	ИО
45	Thv_t	Текущая температура холодной воды, °С	Для закрытых систем горячего водоснабжения задается текущая температура холодной воды на входе второго контура	ИО*
46	Nsec_niz	Количество секций ТО ГВС I ступень	Задается пользователем количество секций ТО 1ой (нижней) ступени на ГВС например, 1, 2, 3 и т.д.	ИО

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
47	Ngr_niz	Количество паралл. групп ТО ГВС I ступень	Задается количество параллельных групп ТО 1ой (нижней) ступени на ГВС например, 1, 2, 3 и т.д.	ИО
48	Hsec_niz	Потери напора в одной секции I ступени, м	Задаются потери напора в одной из секций ТО 1ой (нижней) ступени на ГВС например, 1 метр.	ИО
49	T11_i_niz	Исп. температура на входе 1 контура I ступени, °С	При наличии результатов замеров, задается испытательная температура теплоносителя на входе первого контура Іой (нижней) ступени. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата"	ИО
50	T12_i_niz	Исп. температура на выходе 1 контура I ступени, °С	При наличии результатов замеров, задается испытательная температура теплоносителя на выходе первого контура Іой (нижней) ступени. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата"	ИО
51	T21_i_niz	Исп. температура на входе 2 контура I ступени, °С	При наличии результатов замеров, задается испытательная температура теплоносителя на входе второго контура Іой (нижней) ступени. Об испытательных параметрах ТО подробней здесь	ИО
52	T22_i_niz	Исп. температура на выходе 2 контура I ступени, °С	При наличии результатов замеров, задается испытательная температура	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			теплоносителя на выходе второго контура Іой (нижней) ступени. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата"	
53	Q_i_niz	Исп. тепловая нагрузка I ступени, Гкал/час	При наличии результатов замеров задается тепловая нагрузка Іой (нижней) степени теплообменного аппарата. Об испытательных параметрах ТО см. " Испытательные параметры теплообменного аппарата".	ИО
54	Gniz	Расход 1 контура I ступени ТО ГВС, т/ч	Определяется в результате расчета	Р
55	G2_niz	Расход 2 контура I ступени ТО ГВС, т/ч	Определяется в результате расчета	Р
56	Q_niz	Тепловая нагрузка І ступени, Гкал/час	Определяется в результате расчета	Р
57	T11_niz	Температура на входе 1 контура I ступени, °С	Определяется в результате расчета	Р
58	T12_niz	Температура на выходе 1 контура I ступени, °С	Определяется в результате расчета	Р
59	T21_niz	Температура на входе 2 контура I ступени, °С	Определяется в результате расчета	Р
60	T22_niz	Температура на выходе 2 контура I ступени, °С	Определяется в результате расчета	Р
61	Nsec_verh	Количество секций ТО ГВС II ступень	Задается пользователем количество секций ТО 20й (верхней) ступени на ГВС например, 1, 2, 3 и т.д.	ИО
62	Ngr_verh	Количество паралл. групп ТО ГВС II ступень	Задается количество параллельных групп ТО 20й (верхней) ступени на ГВС например, 1, 2, 3 и т.д.	ИО
63	Hsec_verh	Потери напора в одной секции II ступени, м	Задаются потери напора в одной из секций ТО 2ой (верхней) ступени на ГВС например, 1 метр.	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
64	T11_i_verh	Исп. температура на входе 1 контура II ступени, °С	При наличии результатов замеров, задается испытательная температура теплоносителя на входе первого контура II (верхней) ступени. Об испытательных параметрах ТО подробней <i>см. " Испытательные</i> <i>параметры</i> <i>теплообменного</i> <i>аппарата"</i>	ИО
65	T12_i_verh	Исп. температура на выходе 1 контура II ступени, °С	При наличии результатов замеров, задается испытательная температура теплоносителя на выходе первого контура II (верхней) ступени. Об испытательных параметрах ТО подробней <i>см. " Испытательные</i> <i>параметры</i> <i>теплообменного</i> <i>аппарата"</i>	ИО
66	T21_i_verh	Исп. температура на входе 2 контура II ступени, °С	При наличии результатов замеров, задается испытательная температура теплоносителя на входе второго контура II (верхней) ступени. Об испытательных параметрах ТО подробней <i>см. " Испытательные</i> <i>параметры</i> <i>теплообменного</i> <i>аппарата"</i>	ИО
67	T22_i_verh	Исп. температура на выходе 2 контура II ступени, °С	При наличии результатов замеров, задается испытательная температура теплоносителя на выходе второго контура II (верхней) ступени. Об испытательных параметрах ТО подробней <i>см. " Испытательные</i>	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			параметры теплообменного аппарата"	
68	Q_i_verh	Исп. тепловая нагрузка верхней ступени, Гкал/час	При наличии результатов замеров задается тепловая нагрузка второй степени теплообменного аппарата. Об испытательных параметрах ТО подробней <i>см. " Испытательные</i> <i>параметры</i> <i>теплообменного</i> <i>аппарата</i> "	ИО
69	T11_verh	Температура на входе 1 контура II ступени, °С	Определяется в результате расчета	Р
70	T12_verh	Температура на выходе 1 контура II ступени, °С	Определяется в результате расчета	Р
71	T21_verh	Температура на входе 2 контура II ступени, °С	Определяется в результате расчета	Р
72	T22_verh	Температура на выходе 2 контура II ступени, °С	Определяется в результате расчета	Р
73	Gverh	Расход 1 контура II ступени ТО ГВС, т/ч	Определяется в результате расчета	Р
74	G2_verh	Расход 2 контура II ступени ТО ГВС, т/ч	Определяется в результате расчета	Р
75	Q_verh	Тепловая нагрузка II ступени, Гкал/час	Определяется в результате расчета	Р
76	Gset_nal	Расход сетевой воды на квартал после наладки, т/ч	Определяется в результате расчета	Р
77	Qo_t	Подключенная нагрузка на отопление, Гкал/ч	Определяется в результате расчета по подключенной нагрузке квартала.	Р
78	Qsv_t	Подключенная нагрузка на вентиляцию, Гкал/ч	Определяется в результате расчета по подключенной нагрузке квартала.	Р
79	Qgv_t	Подключенная нагрузка на ГВС, Гкал/ч	Определяется в результате расчета по подключенной нагрузке квартала.	Р
80	Gsum_pod	Суммарный расход сетевой воды, т/ч	Определяется в результате расчета	Р
81	H_ras	Располагаемый напор на вводе ЦТП, м	Определяется в результате расчета	Р
82	H_pod	Напор в подающем трубопроводе, м	Определяется в результате расчета полный напор (с учетом геодезии) в	Р

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			подающем трубопроводе (1 контур), м	
83	H_obr	Напор в обратном тр-де на вводе ЦТП, м	Определяется в результате расчета полный напор (с учетом геодезии) в обратном трубопроводе (1 контур), м	Р
84	Ppod	Давление в подающем трубопроводе, м	Определяется в результате расчета напор (без учета геодезии) в подающем трубопроводе (1 контур), м	Р
85	Pobr	Давление в обратном трубопроводе, м	Определяется в результате расчета напор (без учета геодезии) в обратном трубопроводе (1 контур), м	Р
86	Hout_pod	Напор в подающем тр-де 2 контура ЦТП, м	Определяется в результате расчета полный напор (с учетом геодезии) в подающем тр-де (2 контур ЦТП), м	Р
87	Hgv_pod	Напор в под.тр-де ГВС, м	Определяется в результате расчета полный напор (с учетом геодезии) в подающем тр-де ГВС (2 контур), м	Р
88	Hgv_obr	Напор в обр.тр-де ГВС, м	Определяется в результате расчета полный напор (с учетом геодезии) в обратном тр-де ГВС (2 контур), м	Р
89	Pout_pod	Давление в под.тр-де, м	Определяется в результате расчета напор (без учета геодезии) в подающем тр- де (2 контур ЦТП), м	Р
90	Pgv_pod	Давление в под.тр-де ГВС, м	Определяется в результате расчета напор (без учета геодезии) в подаюшем тр- де ГВС (2 контур), м	Р
91	Pgv_obr	Давление в обр.тр-де ГВС, м	Определяется в результате расчета напор (без учета геодезии) в обратном тр- де ГВС (2 контур), м	Р
92	Pout_obr	Давление в обр.тр-де, м	Определяется в результате расчета напор (без учета	Р

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			геодезии) в обратном тр- де (2 контур ЦТП), м	
93	Hout_obr	Напор в обратном тр-де 2 контура ЦТП, м	Определяется в результате расчета полный напор (с учетом геодезии) в обратном тр-де (2 контур ЦТП), м	Р
94	Gperem	Расход воды по перемычке, т/ч	Определяется в результате расчета	Р
95	Tvso_r	Расчетная температура внутр. воздуха для CO, °C	Задается расчетное значение температуры воздуха внутри отапливаемых помещений при проектировании системы отопления, например 20, 18, 16 или 10°С	ИО
96	Qgv_sred	Расчетная средняя нагрузка на ГВС, Гкал/ч	Задается пользователем по проектным данным. При отсутствии проектных данных расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ ч так и в МВт. Как изменить единицы измерений смотрите здесь.	ИО
97	Qgv_max	Расчетная максимальная нагрузка на ГВС, Гкал/ч	Задается пользователем по проектным данным. Нагрузка может быть задана как в Гкал/ ч так и в МВт. Как изменить единицы измерений смотрите здесь.	ИО
98	Regul_T	Наличие регулятора на ГВС	Указывается признак наличия регулятора температуры на систему горячего водоснабжения:	ИО

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			 0 (или пусто) - отсутствует; 1 - установлен регулятор температуры. 	
99	Kb	Балансовый коэффициент закр.ГВС	Значение этого поля используется при определении балансовой нагрузкив наладочном расчете для закрытых схем ГВС. Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балансовый коэффициент. Коэффициент пользователю регулировать величину нагрузки (и расхода) на которую производится наладка. Если значение поля не задано или само поле в структуре отсутствует, расчет берет значение коэффициента по умолчанию: 1.15 для одноступенчатой схемы, 1.1 для двухступенчатой смешанной, 1.25 для	ИО
100	Regul_G	Способ дросселирования на ЦТП	 Указывается способ дросселирования на ЦТП цифрой от 0 до 6. 0 - дросселирование на ЦТП не производится, если это не является обязательным; 1 - дросселируется выход из ЦТП на отопление, шайба устанавливается всегда на подающем трубопроводе; 2 - дросселируется выход из ЦТП на отопление, 	ИО

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			шайба устанавливается всегда на обратном трубопроводе;	
			3 - дросселируется выход из ЦТП на отопление, места установки шайб определяются автоматически;	
			4 шайбы на вводе в ЦП (общие на отопление и ГВС), места установки шайб определяются автоматически;	
			5 - устанавливаются шайбы на вводе в ЦТП (общие на отопление и ГВС), шайба устанавливается всегда на подающем трубопроводе;	
			 б - устанавливаются шайбы на вводе в ЦТП (общие на отопление и ГВС), шайба устанавливается всегда на обратном трубопроводе 	
101	Hzapas	Запас напора при дросселировании, м	Задается пользователем запас напора при дросселировании, например 1, 2 м.	ИО
102	Tnv_r	Расчетная температура наружного воздуха, °С	Задается расчетное значение температуры наружного воздуха, которое принимается в соответствии со СНиП, например -30, - 35°С	ИО
103	Tnv_t	Текущая температура наружного воздуха, °С	Задается пользователем текущая температура наружнего воздуха, например 8,0,-10,-26 °С	ИО*
104	Tsg_pod	Среднегодовая температура воды в под. тр-де,°С	Задается пользователем среднегодовая температура воды в под. тр-де после ЦТП	ИО**

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
105	Tsg_obr	Среднегодовая температура воды в обр. тр-де,°С	Задается пользователем среднегодовая температура воды в обр. тр-де после ЦТП	ИО**
106	Tsg_grunt	Среднегодовая температура грунта, °С	Задается пользователем среднегодовая температура грунта	ИО**
107	Tsg_nv	Среднегодовая температура наружного воздуха,°С	Задается пользователем среднегодовая температура наружного воздуха	ИО**
108	Tsg_podval	Среднегодовая температура воздуха в подвалах,°С	Задается пользователем среднегодовая температура воздуха в подвалах	ИО**
109	Tgrunt	Текущая температура грунта,°С	Задается пользователем значение текущей температуры грунта	ИО**
110	Tpodval	Текущая температура воздуха в подвалах, °С	Задается пользователем значение текущей температуры воздуха в подвалах	ИО**
111	Gsum_pod2	Суммарный расход воды во 2 контуре ЦТП, т/ч	Определяется в результате расчета	Р
112	Qverh	Тепловая нагрузка верхней ступени ТО ГВС, Гкал/ч	Определяется в результате расчета	Р
113	Qniz	Тепловая нагрузка нижней ступени ТО ГВС, Гкал/ч	Определяется в результате расчета	Р
114	Qut_pod	Потери тепла от утечек в подающем тр-де, Ккал/ч	Определяются в результате расчета потери тепла от утечек в подающем тр-де (2 контур), Ккал/ч	Р
115	Qut_obr	Потери тепла от утечек в обратном тр-де, Ккал/ч	Определяются в результате расчета потери тепла от утечек в обратном тр-де (2 контур), Ккал/ч	Р
116	Qut_potr	Потери тепла от утечек в сист. теплопотреб., Ккал/ч	Определяется в результате расчета	Р
117	T11_i	Исп. температура воды на входе 1 контура, °С	Задается температура воды на входе 1 контура системы отопления по результатам испытаний,	ИО

№	Имя поля	Наименование поля	Информация,	Тип
			если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах <i>см.</i> " Испытательные параметры теплообменного аппарата".	
118	T12_i	Исп. температура воды на выходе 1 контура, °С	Задается температура воды на выходе 1 контура системы отопления по результатам испытаний, если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах <i>см.</i> " Испытательные параметры теплообменного аппарата".	ИО
119	T21_i	Исп. температура воды на входе 2 контура, °С	Задается температура воды на входе 2 контура системы отоплениея по результатам испытаний, если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах <i>см.</i> " Испытательные параметры теплообменного аппарата".	ИО
120	T22_i	Исп. температура воды на выходе 2 контура, °С	Задается температура воды на выходе 2 контура системы отопления по результатам испытаний, если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах <i>см.</i> " Испытательные	ИО

№	Имя поля	Наименование поля	Информация,	Тип
			записываемая в поле	
			параметры теплообменного	
			annapama" .	
121	G1_i	Исп. расход 1 контура, т/ч	Задается пользователем	ИО
			испытательный расход	
			1 контура системы	
			отопления по результатам	
			испытаний. Если	
			испытания не	
			проводились, то для	
			наладочного расчета	
			задается равным 0.	
			Для поверочного расчета	
			можно задать проектное	
			значение.	
122	G2_1	Исп. расход 2 контура, т/ч	Задается пользователем	ИО
			испытательный расход	
			2 контура системы	
			испытаний Бели	
			испытания не	
			проволицись то лля	
			наладочного расчета	
			задается равным 0.	
			Для поверочного расчета	
			можно задать проектное	
			значение.	
123	Qsum	Суммарная тепловая	Определяется в результате	Р
		нагрузка на ЦТП, Гкал/ч	расчетов	
124	Qts_pod	Тепловые потери в	Определяются тепловые	Р
		подающем тр-де, Ккал/ч	потери в подающем тр-де	
			(2 контур), Ккал/ч	
125	Qts_obr	Тепловые потери в	Определяются тепловые	Р
		обратном тр-де, Ккал/ч	потери в обратном тр-де (2	
			контур), Ккал/ч	
126	Gut_pod	Расход воды на утечки из	Определяется в результате	Р
		под. тр-да, т/ч	расчетов расход воды на	
			утечки из под. тр-да (2	
			контур), т/ч	
127	Gut_obr	Расход воды на утечки из	Определяется в результате	Р
		обр. тр-да, т/ч	расчетов расход воды на	
			утечки из обр. тр-да (2	
			контур), т/ч	
128	Gut_potr	Расход воды на утечки из	Определяется в результате	Р
		систем теплопотреб., т/ч	расчетов расход воды	
			на утечки из систем	
			теплопотреб., т/ч	

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
129	Time	Время прохождения воды от источника, мин	Определяется в результате расчета	Р
130	Dist	Путь, пройденный от источника, м	Определяется в результате расчета	Р
131	Tb	Давление вскипания, м	Определяется в результате расчета напор (без учета геодезической отметки) критический (вскипания) на входе, м	Р
132	Tb_out	Давление вскипания на выходе ЦТП, м	Определяется в результате расчета напор (без учета геодезической отметки) критический (вскипания) на выходе ЦТП, м	Р
133	Hstat	Статический напор на входе, м	Определяется в результате расчета	Р
134	Hstat_out	Статический напор на выходе ЦТП, м	Определяется в результате расчета	Р

21.9. Перемычка

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
1	Name	Название	Записывается наименование перемычки например, соответствующее месту ее установки	ИО
2	Nist	Номер источника	Определяется в результате расчета	Р
3	H_geo	Геодезическая отметка	Задается отметка оси (верха) трубы, где установлена перемычка. Она может автоматически быть считана со слоя рельефа («Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»).	ИО
4	Lper	Длина перемычки, м	Задается пользователем длина перемычки, например, 1 м.	ИО
5	Dper	Диаметр перемычки, м	Задается пользователем диаметр перемычки, например, 0.1 м.	ИО
6	Zper	Коэф. местных сопротивлений	Задается пользователем коэффициент местных	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			сопротивлений перемычки перемычки, в зависимости от тех устройств которые установлены на перемычке.	
7	Kper	Шероховатость, мм	Задается пользователем шероховатость перемычки, например 1, 2, 4 и т.д. мм.	ИО
8	Sper	Сопротивление, м*ч2/т2	Задается пользователем рассчетное сопротивление перемычки. В этом случае значения полей длины, диаметра, шероховатости и коэффициента местных сопротивлений не учитываются.	ИО
9	Gperem	Расход воды по перемычке, т/ ч	Определяется в результате расчета	Р
10	H_ras	Располагаемый напор, м	Определяется в результате расчета	Р
11	H_pod	Напор в подающем трубопроводе, м	Определяется в результате расчета	Р
12	H_obr	Напор в обратном трубопроводе, м	Определяется в результате расчета	Р
13	Ppod	Давление в подающем трубопроводе, м	Определяется в результате расчета	Р
14	P_obr	Давление в обратном трубопроводе, м	Определяется в результате расчета	Р
15	Time	Время прохождения воды от источника, мин	Определяется в результате расчета	Р
16	Dist	Путь, пройденный от источника, м	Определяется в результате расчета	Р
17	Тb	Давление вскипания, м	Определяется в результате расчета	Р
18	Hstat	Статический напор, м	Определяется в результате расчета	Р
19	Hstat_out	Статический напор на выходе, м	Определяется в результате расчета	Р
20	Tpod	Температура в подающ. трубопроводе, °С	Определяется в результате расчета	Р
21	Tobr	Температура в обратном трубопроводе, °С	Определяется в результате расчета	Р

21.10. Обобщенный потребитель

N⁰	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
1	Name	Наименование узла	Задается пользователем, например Квартал № 11	ИН
2	Nist	Номер источника	Определяется в результате расчета	Р
3	H_geo	Геодезическая отметка, м	Задается отметка оси (верха) трубы, на котором находится данный узел ввода. Она может автоматически быть считана со слоя рельефа («Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»).	ИО
4	N_schem	Способ задания нагрузки	Выбирается из списка способ задания нагрузки: расходом или сопротивлением. 0 (или пусто) - задается расходом 1 - задается расчетным сопротивлением	ИО
5	Gpod	Расход на СО,СВ и закр.системы ГВС, т/ч	Задается суммарная величина расхода на системы отопления, вентиляции и закрытой системы ГВС, для данного потребителя. Данное значение необходимо указывать только в том случае, если в поле Способ задания нагрузки установлено Задается расходом	ИО
6	Kso	Коэфф.изменения расхода на СО,СВ и закр.системы ГВС	Задается пользователем в случае необходимости увеличения расхода на СО, СВ и закр. ГВС по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное значение будет	ИО

№	Имя поля	Наименование поля	Информация,	Тип
			увеличено соответственно на 10 или 20%	
7	Gu_r	Расход на открытый водоразбор, т/ч	Задается величина расхода на открытый водоразбор	ИО
8	Kgv	Коэфф.изменения расхода на открытый водоразбор	Задается пользователем в случае необходимости увеличения расхода на открытый водоразбор по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное значение будет увеличено соответственно на 10 или 20%	ИО
9	Beta	Доля водоразбора из подающего тр-да	Указывается доля открытого водоразбора из подающего трубопровода, например 0.4 - 40% водоразбора из под. тр-да	ИО
10	Pmax_obr	Максимальное давление в обратном тр-де, м	Указывается максимально допустимое давление в обратном трубопроводе на потребителе. В случае если поле не задано используется значение и настроек расчетов.	ИО
11	Sr	Расчетное обобщенное сопротивление, м/(т/ч)*2	Указывается величина предварительно рассчитанного обобщенного сопротивления. Данное значение необходимо указывать только в том случае, если Способ задания нагрузки установлен Задается сопротивлением	ИО
12	Н	Требуемый напор, м	Задается требуемый располагаемый напор на обобщенном потребителе, например 10, 15, 20 и т.д. метров	ИО
13	Hzdan	Минимальный статический напор, м	Задается минимальный статический напор на обобщенном потребителе,	ИО

аписываемая в полеаписываемая в полеаписываемая в полеинпример 10, 15, 20 и т.д. метров14Tobr_туреСпособ определения температуры обр. воды14Tobr_туреСпособ определения температуры;14Tobr_typeСпособ определения температуры;15Tobr_valФактическая температура вразличных расчетах15Tobr_valФактическая температура воды, °C обр. воды, °C16H_rasРасполагаемый напор, м иробиках расчетов17H_podНапор в подающем проблае, м18H_obrНапор в обраном треде, м проблороводе, м19PpodДавление в подающем трубопроводе, м19PpodДавление в подающем трубопроводе, м20PohrДавление в подающем трубопроводе, м21TimeВремя прохождения воды геточника, мин.22DistПуть, пройденный о техническая результате проблека расчета23TbДавление всипания, м давление в статический напор, м24НаtatСтатический напор, м0Определяется в результате расчета24НаtatСтатический напор, м0Определяется в результате расчета24НаtatСтатический напор, м25Поредоводе, м	№	Имя поля	Наименование поля	Информация,	Тип
Independenceнапример 10, 15, 20 и т.д. метров14Tobr_typeСпособ спестоб определения температуры обр. водыя температуры:Задастея пифрой способ определения температуры:ИО14Tobr_typeСпособ спестоб разона стемпературы:0 (или пусто) - по отопительной формуле; 1 - по фактической температуре.П15Tobr_valФактическая температура обр. воды, °CДля учета фактическая температура в различных расчетах сперачура в различных расчетов).ИО15Tobr_valФактическая температура обр. воды, °CДля учета фактическая температура в различных расчетов.ИО16Н_газРасполагаемый напор, м трубопроводе, мОпределяется в результате расчетаР17Н_родНапор в подающем трубопроводе, мОпределяется в результате расчетаР19РродДавление в подающем трубопроводе, мОпределяется в результате расчетаР20РоbrДавление в подающем трубопроводе, мОпределяется в результате расчетаР21ТітвеВремя прохожления водо от источника, мОпределяется в результате расчетаР22DistПуть, пройденный ог источника, мОпределяется в результате расчетаР23ТbДавление всипания, м давление в систаОпределяется в результате расчетаР24НаtatСтатический напор, мОпределяется в результате расчетаР				записываемая в поле	
Image: Constant of the section of the sectin of the section of the secti				например 10, 15, 20 и т.д.	
14 Тоbr_type Способ гемпературы обр. воды Задается цифрой способ определения температуры: ИО 0 (или пусто) -по отопительной формуле; 0 (или пусто) -по отопительной формуле; 1 1 - по фактической температуры Для учета фактической температуры в различных расчетах следует включить эту опщию 4 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическая иО иО 15 Tobr_val Фактическая температура обр. воды, °C Определяется различных расчетах иО 16 H_ras Располагаемый напор, м трубопроволе, м Определяется в результате расчета Р 17 H_pod Напор в подающем трубопроволе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м трубопроволе, м Определяется в результате расчета Р 19 Ррод Давление в подающем от источника, мин Определяется в результате расчета Р 21 Тітве Вемя прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, ми Определяется в результате расчета </td <td></td> <td></td> <td></td> <td>метров</td> <td></td>				метров	
Гемпературы обр. воды определения температуры: определения температуры: 0 (или пусто) -по отопительной формуле; 1 1 - по фактической температуры в различных расчетах следует включить эту опцию в настройки расчетов). 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическая настройках расчетов). 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическоя температуры в различных расчетах следует включить эту опцию в настройках расчетов). 16 Н_ras Располагаемый напор, м пубопроводе, м Определяется в результате расчета Р 18 Н_obr Напор в подающем тубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в подающем тубопроводе, м Определяется в результате расчета Р 21 Time Вемя прохождения воды тубопроводе, м Определяется в результате расчета Р 22 Dist Путь, пройденный от систочника, мин Определяется в результате расчета Р 23 Тb Давление вскипания, м Определяется в результате расчета Р 24 Наtat Статический напор, м Определяется в р	14	Tobr_type	Способ определения	Задается цифрой способ	ИО
1 Порадини претуры: 0 (или пусто) -по отопительной формуле; 1 - по фактической температуры в различных расчета 1 - по фактической температуры в различных расчета 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактической температуры в различных расчета ИО 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактической температуры в различных расчетах ИО 16 H_ras Располагаемый напор, м трубопроводе, м Определяется результате расчета Р 17 H_pod Напор в подающем трубопроводе, м Определяется результате расчета Р 19 Ppod Давление в обратном трубопроводе, м Определяется результате расчета Р 20 Pobr Давление в обратном трубопроводе, м Определяется результате расчета Р 21 Time Вемя прохождения воды источника, мин Определяется результате расчета Р 23 Tb Давление вскипания, м Определяется результате расчета Р 24 Наtat Статический напор, м Определяется результате расчета Р			температуры обр. воды	определения	
1 Оснити пусто) -по отопительной формуле; 1 - по фактической температуре. Для учета фактической температуры в различных расчетах следует Для учета фактической температуры в различных расчетов). 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическая температуры в различных расчетов). 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическая температуры в различных расчетах следует 16 Н_газ Располагаемый напор, м Определяется результате расчета Р 17 Н_род Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 Н_оbr Напор в обратном тр-де, м Определяется в результате расчета Р 20 Роbr Давление в подающем от источника, мин Определяется в результате расчета Р 21 Тіте Время прохождения воды Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, мин Определяется в результате расчета Р 23 ТЬ Давление вскипания, м Определяется в результате расчета Р 24 Наtat Статический				температуры:	
1 0 (или пусто) -по отопительной формуле; 1 - по фактической температуре. 1 - по фактической температуре. Для учета фактической температуры в различных расчетах Спелует включить эту опцию в настройки расчетов). 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическая температура воды на выходе из обобщенного потребителя. ИО 16 Н_ras Располагаемый напор, м пубопроводе, м Определяется в результате расчета Р 17 Н_pod Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тредем грубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в подающем грубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, ми Определяется в результате расчета Р 23 Tb Давление в скипания, м Определяется в результате расчета Р 24 Наtat Статический напор, м Определяется в результате расчета Р					
и отопительной формуле; 1 по фактической температуре. Для учета фактической температурь в различных расчетах следует включить эту опцию в настройках расчетов. И 15 Tobr_val Фактическая температура уматической температурь в различных расчетов. И 16 H_ras Располагаемый напор, м Указывается фактической температура обр. воды, °C Иля учета фактической температура обр. воды, °C 16 H_ras Располагаемый напор, м Определяется в результате расчетов. Р 17 H_pod Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном трубопроводе, м Определяется в результате расчета Р 19 Podr Давление в подающем турбопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном трясчета Определяется в результате расчета Р 21 Time Время прохождения воды Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, ми Определяется в результате расчета Р 23 Tb Давление вскипания, м <td></td> <td></td> <td></td> <td>0 (или пусто) -по</td> <td></td>				0 (или пусто) -по	
1 - по фактической гемпературе. Для учета фактической температуре. Для учета фактической температурь в различных расчетах следует включить эту опцию в настройкия расчетов). 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическая и мото поребителя. 16 H_ras Располагаемый напор, м следуета включить эту опцию в настройкия расчетов). Лля учета фактической температура воды на выходе из обобщенного поребителя. 17 H_pod Располагаемый напор, м следуета включить эту опцию в настройкия расчетов). Определяется в результате расчета 18 H_obr Напор в подающем трубопроводе, м следуета расчета Определяется в результате расчета 19 Pod Давление в подающем трубопроводе, м следуета расчета Определяется в результате расчета 20 Pobr Давление в подоющем трубопроводе, м стето престя в результате расчета Р 21 Time Время похождения воды опеста в результате расчета Р 21 Time Время похождения воды опеста в результате расчета Р 23 Tb Давление в киппания, м стето пределяется в результате расчета Р 24 Наta Статический напор, м Определяется в результате расчета Р <td></td> <td></td> <td></td> <td>отопительной формуле;</td> <td></td>				отопительной формуле;	
1 - по фактической температуре. Для учета фактической температуры в различных расчетах следует включить эту опцию в настройки расчетов. 15 Tobr_val Фактическая температура обр. воды,°С Указывается фактическая ИО температуры в различных расчетах 16 Н_таs Располагаемый напор, м трубопроводе, м Определяется в результате расчета Р 17 Н_оbr Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 Н_obr Напор в подающем трубопроводе, м Определяется в результате расчета Р 19 Ррод Давление в подающем трубопроводе, м Определяется в результате расчета Р 20 Роbr Давление в подающем трубопроводе, м Определяется в результате расчета Р 21 Тime Время прохождения воды от источника, мин Определяется в результате расчета Р 23 Тb Давление в скипания, м Определяется в результате расчета Р 24 Наtat Статический напор, м Определяется в результате расчета Р				1 1 V	
Гемпературе. Для учета фактической температуры в различных расчетах Следует 15 Tobr_val Фактическая температура Указывается фактическая ИО в настройки расчетов). 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическая ИО в настройки расчетов). 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическая ИО выходе из обобщенного потребителя. 16 H_ras Располагаемый напор, м Определяется в результате расчетах Р 17 H_pod Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м Определяется в результате расчета Р 19 Ppod Давление в подающем трубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном тр-де, м Определяется в результате расчета Р 21 Time Вемя прохождения воды Определяется в результате расчета Р 23 Tob Давление вскипания, м Определяется в результате расчета Р 24 Наtat Статический напор, м Опреде				1 - по фактическои	
Для учета фактической температуры в различных расчетах следует включить эту опщию (Настройки расчетов). ИО 15 Tobr_val Фактическая температура обр. воды, °С Указывается фактическая гемпература воды на выходе из обобщенног потребителя. ИО 16 Н_таs Располагаемый напор, м Определяется в результате расчета Р 17 Н_род Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в подающем трубопроводе, м Определяется в результате расчета Р 19 Pod Давление в подающем трубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в подающем трубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, мин Определяется в результате расчета Р 23 Tb Давление вскипания, м Определяется в результате расчета Р 24 Наtat Статический напор, м Определяется в результате расчета Р				температуре.	
Гой усла цакличных расчетах следует включить эту опцию в настройка расчетов, 15 Tobr_val Фактическая температура обр. воды, °С Указывается фактическая исстройки расчетов). ИО 15 Tobr_val Фактическая температура обр. воды, °С Указывается фактическая температура воды на выходе из обобщенного потребителя. ИО 16 H_ras Располагаемый напор, м Определяется в результате расчета Р 17 H_pod Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в подающем трубопроводе, м Определяется в результате расчета Р 19 Pod Давление в подающем трубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном трубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 23 Tb Давление вскипания, м Определяется в результате расчета Р 24 Наtat Статический напор, м Определяется в результате расчета Р				Лля уцета фактицеской	
Гомпературы в различных расчетах Следует включить эту опцию в настройках расчетов. 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическая импература воды на выходе из обобщенного потребителя. ИО 15 Tobr_val Фактическая температура обр. воды, °C Указывается фактическая температуры в различных расчетах ИО 16 H_ras Располагаемый напор, м Определяется в результате расчета Р 17 H_pod Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м прубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в подающем прубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, м Определяется в результате расчета Р 23 Tb Давление вскипания, м расчета Определяется в результате расчета Р 24 Наtat Статический напор, м Определяется в результате расчета Р				для учета фактической	
Поветия следует включить эту опцию в настройках расчетов. 15 Tobr_val Фактическая температура обр. воды, °С Указывается фактическая температура воды на выходе из обобщенного потребителя. ИО 15 Tobr_val Фактическая температура обр. воды, °С Указывается фактическай температура воды на выходе из обобщенного потребителя. ИО 16 H_ras Располагаемый напор, м трубопроводе, м Определяется в результате расчета Р 17 H_pod Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м трубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в подающем трубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, м Определяется в результате расчета Р 23 Tb Давление вскипания, м Определяется в результате расчета Р 24 Наtat Статический напор, м Определяется в результате расчета Р <td></td> <td></td> <td></td> <td>пасчетах спелует</td> <td></td>				пасчетах спелует	
Винон пито и				включить эту опцию	
Пастройки расчетов). Пастройки расчетов). 15 Tobr_val Фактическая температура обр. воды,°С Указывается фактическая температура воды на выходе из обобщенного потребителя. ИО 15 Tobr_val Фактическая температура обр. воды,°С Указывается фактической температуры в различных расчетах ИО 16 H_ras Располагаемый напор, м трубопроводе, м Определяется в результате расчета Р 17 H_pod Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м трубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном трубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, м Определяется в результате расчета Р 23 Tb Давление вскипания, м Определяется в результате расчета Р 24 Наtat Статический напор, м Определяется в результате расчета Р				в настройках пасчетов	
15 Тоbr_val Фактическая температура обр. воды, °С Указывается фактическая гемпература воды на выходе из обобщенного потребителя. ИО 15 Тоbr_val Фактическая температура обр. воды, °С Указывается фактической гемпература воды на выходе из обобщенного потребителя. ИО 16 H_ras Располагаемый напор, м Определяется в результате расчета Р 17 H_pod Напор в подающем грубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м Определяется в результате расчета Р 19 Ppod Давление в подающем грубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном грубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 23 Tb Давление вскипания, м Определяется в результате расчета Р 24 Наtat Статический напор, м Определяется в результате расчета Р				(Настройки расчетов).	
15 Гобг_val Фактическая температура указывается фактическая исогратура указывается фактическая исогратура 16 м.	15	Toha vol	<u>Фолтегно от полоте по стало та та с</u>		ИО
обр. воды, С Температура воды на выходе из обобщенного потребителя. Для учета фактической температуры в различных расчетах Следует включить эту опцию в настройках расчетов. 16 Н_ras Располагаемый напор, м Определяется в результате расчета Р 17 Н_pod Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м Определяется в результате расчета Р 19 Ppod Давление в подающем трубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном трубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, м Определяется в результате расчета Р 23 Tb Давление вскипания, м Определяется в результате расчета Р 24 Нstat Статический напор, м Определяется в результате расчета Р	15	1 obr_vai	Фактическая температура	указывается фактическая	ИО
выходе из осоощенного потребителя.Для учета фактической температуры в различных расчетах16H_rasРасполагаемый напор, мОпределяется в результате расчета17H_podНапор в подающем трубопроводе, мОпределяется в результате расчета18H_obr19PpodДавление в подающем трубопроводе, мОпределяется в результате расчета20PobrДавление в подающем трубопроводе, мОпределяется в результате расчета21TimeВремя прохождения воды от источника, минОпределяется в результате расчета22DistПуть, пройденный от источника, мин23TbДавление вскипания, м определяется в результате расчета24HstatСтатический напор, м			оор. воды, С	температура воды на	
Потреонтеля.Для учета фактической температуры в различных расчетах следует включить эту опцию в настройках расчетов.16H_rasРасполагаемый напор, мОпределяется в результате расчетаР17H_podНапор в подающем трубопроводе, мОпределяется в результате расчетаР18H_obrНапор в обратном тр-де, мОпределяется в результате расчетаР19PpodДавление в подающем трубопроводе, мОпределяется в результате расчетаР20PobrДавление в подающем трубопроводе, мОпределяется в результате расчетаР21TimeВремя прохождения воды от источника, минОпределяется в результате расчетаР22DistПуть, пройденный от источника, мОпределяется в результате расчетаР23TbДавление вскипания, м источника, мОпределяется в результате расчетаР24НаtaСтатический напор, мОпределяется в результате расчетаР				выходе из осоощенного	
Цля учета фактической гемпературы в различных расчетах следует включить эту опцию в настройках расчетов.16H_rasРасполагаемый напор, мОпределяется в результате расчетаР17H_podНапор в подающем грубопроводе, мОпределяется в результате расчетаР18H_obrНапор в обратном тр-де, мОпределяется в результате расчетаР19PpodДавление в подающем грубопроводе, мОпределяется в результате расчетаР20PobrДавление в подающем грубопроводе, мОпределяется в результате расчетаР21TimeВремя прохождения воды от источника, минОпределяется в результате расчетаР22DistПуть, пройденный от источника, мОпределяется в результате расчетаР23TbДавление вскипания, м источника, мОпределяется в результате расчетаР24НяаtСтатический напор, мОпределяется в результате расчетаР				потребителя.	
Гемпературы в различных расчетахГемпературы в различных расчетах16Н_газРасполагаемый напор, м трубопроводе, мОпределяется в результате расчетаР17Н_родНапор в подающем трубопроводе, мОпределяется в результате расчетаР18Н_оbrНапор в обратном тр-де, м трубопроводе, мОпределяется в результате расчетаР19РродДавление в подающем трубопроводе, мОпределяется в результате расчетаР20РоbrДавление в подающем трубопроводе, мОпределяется в результате расчетаР21ТітеВремя прохождения воды от источника, минОпределяется в результате расчетаР22DistПуть, пройденный от источника, мОпределяется в результате расчетаР23ТbДавление вскипания, м определяется в результате расчетаР24НяtatСтатический напор, мОпределяется в результате расчетаР				Лля учета фактической	
Расчетах следует включить эту опцию в настройках расчетов. 16 H_ras Располагаемый напор, м Определяется в результате расчета Р 17 H_pod Напор в подающем грубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м Определяется в результате расчета Р 19 Pod Давление в подающем грубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном грубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, м Определяется в результате расчета Р 23 Tb Давление вскипания, м Определяется в результате расчета Р 24 Няtat Статический напор, м Определяется в результате расчета Р				температуры в различных	
включить эту опцию в настройках расчетов. 16 H_ras Располагаемый напор, м Определяется в результате расчета Р 17 H_pod Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м Определяется в результате расчета Р 19 Ppod Давление в подающем трубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном трубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, м Определяется в результате расчета Р 23 Tb Давление вскипания, м Определяется в результате расчета Р 24 Hstat Статический напор, м Определяется в результате расчета Р				расчетах следует	
в настройках расчетов. (Настройки расчетов). 16 Н_газ Располагаемый напор, м Определяется в результате расчета Р 17 Н_род Напор в подающем грубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м Определяется в результате расчета Р 19 Ррод Давление в подающем грубопроводе, м Определяется в результате расчета Р 20 Роbr Давление в подающем грубопроводе, м Определяется в результате расчета Р 21 Тіте Время прохождения воды определяется в результате расчета Р 22 Dist Путь, пройденный от источника, мин Определяется в результате расчета Р 23 Ть Давление вскипания, м Определяется в результате расчета Р 24 Нstat Статический напор, м Определяется в результате расчета Р				включить эту опцию	
Image: Constraint of the state of the st				в настройках расчетов.	
16 H_ras Располагаемый напор, м Определяется в результате расчета Р 17 H_pod Напор в подающем трубопроводе, м Определяется в результате расчета Р 18 H_obr Напор в обратном тр-де, м Определяется в результате расчета Р 19 Ppod Давление в подающем трубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном трубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, м Определяется в результате расчета Р 23 Tb Давление вскипания, м Определяется в результате расчета Р 24 Hstat Статический напор, м Определяется в результате расчета Р				(Настройки расчетов).	
Image: Packetaрасчета17H_podНапор в подающем трубопроводе, мОпределяется в результате расчетаР18H_obrНапор в обратном тр-де, м трубопроводе, мОпределяется в результате расчетаР19PpodДавление в подающем трубопроводе, мОпределяется в результате расчетаР20PobrДавление в обратном трубопроводе, мОпределяется в результате расчетаР20PobrДавление в обратном трубопроводе, мОпределяется в результате расчетаР21TimeВремя прохождения воды от источника, минОпределяется в результате расчетаР22DistПуть, пройденный от источника, мОпределяется в результате расчетаР23TbДавление вскипания, м расчетаОпределяется в результате расчетаР24HstatСтатический напор, мОпределяется в результате расчетаР	16	H_ras	Располагаемый напор, м	Определяется в результате	Р
17Н_роdНапор в подающем грубопроводе, мОпределяется в результате расчетаР18Н_оbrНапор в обратном тр-де, м Поределяется в результате расчетаОпределяется в результате расчетаР19РроdДавление в подающем грубопроводе, мОпределяется в результате расчетаР20РobrДавление в обратном грубопроводе, мОпределяется в результате расчетаР21ТimeВремя прохождения воды от источника, минОпределяется в результате расчетаР22DistПуть, пройденный от источника, мОпределяется в результате расчетаР23ТbДавление вскипания, м определяется в результате определяется в результате расчетаР24НstatСтатический напор, мОпределяется в результате расчетаР				расчета	
11 Папор в и подающей определяется в результате трубопроводе, м Определяется в результате расчета 18 Н_оbr Напор в обратном тр-де, м Определяется в результате расчета Р 19 Ррод Давление в подающем трубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном определяется в результате трубопроводе, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, м Определяется в результате расчета Р 23 Тb Давление вскипания, м Определяется в результате расчета Р 24 Нstat Статический напор, м Определяется в результате расчета Р	17	H pod	Напор в полающем	Определяется в результате	р
18H_obrHanop в обратном тр-де, мОпределяется в результате расчетаP19PpodДавление в подающем трубопроводе, мОпределяется в результате расчетаP20PobrДавление в обратном трубопроводе, мОпределяется в результате расчетаP21TimeВремя прохождения воды от источника, минОпределяется в результате расчетаP22DistПуть, пройденный от источника, мОпределяется в результате расчетаP23TbДавление вскипания, м определяется в результате расчетаP24HstatСтатический напор, мОпределяется в результате расчетаP	1,	n_pou	трубопроволе м	расчета	1
18 Напор в ооратном тр-де, м Определяется в результате расчета Р 19 Ррод Давление в подающем трубопроводе, м Определяется в результате расчета Р 20 Pobr Давление в обратном тр-де, м Определяется в результате расчета Р 21 Time Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, м Определяется в результате расчета Р 23 Ть Давление вскипания, м Определяется в результате расчета Р 24 Hstat Статический напор, м Определяется в результате расчета Р	10	II. cha			D
19PpodДавление в подающем трубопроводе, мОпределяется в результате расчетаP20PobrДавление в обратном трубопроводе, мОпределяется в результате расчетаP21TimeВремя прохождения воды от источника, минОпределяется в результате расчетаP22DistПуть, пройденный от источника, мОпределяется в результате расчетаP23TbДавление вскипания, м расчетаОпределяется в результате расчетаP24HstatСтатический напор, мОпределяется в результате расчетаP	10	H_ODI	напор в обратном тр-де, м	Определяется в результате	r
19РроdДавление в подающем грубопроводе, мОпределяется в результате расчетаР20PobrДавление в обратном грубопроводе, мОпределяется в результате расчетаР21TimeВремя прохождения воды от источника, минОпределяется в результате расчетаР22DistПуть, пройденный от источника, мОпределяется в результате расчетаР23TbДавление вскипания, мОпределяется в результате расчетаР24HstatСтатический напор, мОпределяется в результате расчетаР				расчета	
трубопроводе, мрасчета20PobrДавление в обратном трубопроводе, мОпределяется в результате расчетаP21TimeВремя прохождения воды от источника, минОпределяется в результате расчетаP22DistПуть, пройденный от источника, мОпределяется в результате расчетаP23TbДавление вскипания, м Статический напор, мОпределяется в результате расчетаP24HstatСтатический напор, мОпределяется в результате расчетаP	19	Ppod	Давление в подающем	Определяется в результате	Р
20PobrДавление в обратном трубопроводе, мОпределяется в результате расчетаP21TimeВремя прохождения воды от источника, минОпределяется в результате расчетаP22DistПуть, пройденный от источника, мОпределяется в результате расчетаP23TbДавление вскипания, мОпределяется в результате расчетаP24HstatСтатический напор, мОпределяется в результате расчетаP			трубопроводе, м	расчета	
трубопроводе, м расчета 21 Тіте Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, мин Определяется в результате расчета Р 23 Ть Давление вскипания, м Определяется в результате расчета Р 24 Нstat Статический напор, м Определяется в результате расчета Р	20	Pobr	Давление в обратном	Определяется в результате	Р
21 Тіте Время прохождения воды от источника, мин Определяется в результате расчета Р 22 Dist Путь, пройденный от источника, мин Определяется в результате расчета Р 23 Тb Давление вскипания, м Определяется в результате расчета Р 24 Hstat Статический напор, м Определяется в результате расчета Р			трубопроводе, м	расчета	
22DistПуть, пройденный от источника, минОпределяется в результате расчетаР23TbДавление вскипания, мОпределяется в результате расчетаР24HstatСтатический напор, мОпределяется в результате расчетаР	21	Time	Время прохождения волы	Определяется в результате	Р
22DistПуть, пройденный от источника, мОпределяется в результате расчетаР23ТbДавление вскипания, мОпределяется в результате расчетаР24HstatСтатический напор, мОпределяется в результате расчетаР			от источника, мин	расчета	
22Distпуть, проиденный от Определяется в результате р23TbДавление вскипания, мОпределяется в результате р24HstatСтатический напор, мОпределяется в результате р	22	Dist			D
23ТbДавление вскипания, мОпределяется в результате расчетаР24HstatСтатический напор, мОпределяется в результате расчетаР		DISt	путь, проиденный от	определяется в результате	Ľ
23 Ть Давление вскипания, м Определяется в результате расчета Р 24 Hstat Статический напор, м Определяется в результате расчета Р			источника, м	расчета	
24HstatСтатический напор, мОпределяется в результате расчетаР	23	Tb	Давление вскипания, м	Определяется в результате	Р
24 Hstat Статический напор, м Определяется в результате Р расчета				расчета	
расчета	24	Hstat	Статический напор, м	Определяется в результате	Р
				расчета	

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
25	Hstat_out	Статический напор на выходе, м	Определяется в результате расчета	Р
26	Tpod	Температура воды в подающем трубопроводе, °С	Определяется в результате расчета	Р
27	Tobr	Температура воды в обратном трубопроводе, °C	Определяется в результате расчета	Р
28	St	Обобщенное сопротивление, м/(т/ч)*2	Определяется в результате расчета	Р
29	Gu_t	Расход воды на открытый водоразбор, т/ч	Определяется в результате расчета	Р
30	Gt_pod	Расход воды в подающем тр-де, т/ч	Определяется в результате расчета	Р
31	Gt_obr	Расход воды в обратном тр-де, т/ч	Определяется в результате расчета	Р
Глава 22. Подбор оборудования Danfoss

В ZuluThermo реализована возможность по подбору оборудования компании Danfoss.

Программный комплекс позволяет произвести автоматический подбор запорной арматуры – шаровых кранов типа JIP. В качестве результата расчёта выдаётся кодовый номер шарового крана и кодовый номер привода (в случае электропривода) и полная техническая информация по оборудованию.

Также в программный комплекс включены следующие типы регуляторов прямого действия: AFP/VFG2 – регуляторы перепада давлений, AFD/VFG2 – регуляторы давления "после себя", AFA/VFG2 – регуляторы подпора, PCV – версии вышеозначенных регуляторов с пилотным контуром на повышенные расходы. В качестве результата расчёта выдаётся кодовый номер клапана, регулирующего блока и импульсной трубки и полная техническая информация по оборудованию. Все поля имеют всплывающие подсказки.

Подбор регуляторов фирмы Danfoss производится для узловых элементов с типом Дросселирующий узел со следующими режимами: Вычисляемая шайба, Устанавливаемая шайба, Регулятор напора, Регулятор давления в подающем, Регулятор давления в обратном, Регулятор напора на обратном. Оборудование необходимо подбирать после проведения наладочного расчета.

Для объектов Задвижка реализована возможность по подбору шаровых кранов компании Danfoss. Подбор оборудования следует проводить после проведения наладочного расчета.

- см. "Подбор шаровых кранов фирмы Danfoss" ;
- см. "Подбор регуляторов прямого действия фирмы Danfoss".

22.1. Подбор шаровых кранов фирмы Danfoss

В ZuluThermo для объектов Задвижка реализована возможность по подбору шаровых кранов компании Danfoss. Подбор оборудования следует проводить после проведения наладочного расчета.

- см. "Открытие окна подбора";
- см. "Добавление полей в базу данных";
- см. "Занесение исходных данных";
- см. "Подбор ШК";
- см. "Очистка полей по ШК" ;
- см. "Открытие справочника ШК Danfoss";

- см. "Пример подбора шаровых кранов Danfoss";
- см. "Справочная информация по полям ШК Danfoss" .

22.1.1. Открытие окна подбора

Для открытия окна подбора шаровых кранов следует:

1.

Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку ^{Са}на панели инструментов;

- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss.

ZuluThermo	_ • ×				
Система централизованного теплоснабжени	Слой				
Наладка Поверка Температурный график Конструкторский Сервис Da					
Тип оборудования: Шаровые краны JIP 🔹					
Тип присоединения по умолчанию: Под приварку 🔻					
Обновить поля Подобрать шаровые краны					
Очистить все поля					
Заполнить исходные данные Справочник по кранам					
Расчет Настройки Справка Закрыть					

Рисунок 22.1. Открытие окна подбора ШК

4. В списке Тип оборудования выбрать Шаровые краны JIP.

22.1.2. Добавление полей в базу данных

По умолчанию в базе данных по запорным устройствам поля для подбора ШК Danfoss отсутствуют. Для их добавления в базу следует:

- 1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку на панели инструментов;
- Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;

- 4. В списке Тип оборудования выбрать Шаровые краны ЈІР;
- 5. Нажать кнопку Обновить поля. В результате в БД по задвижкам добавятся поля для шаровых кранов.

ZuluThermo _ ×					
Система централизованного теплоснабжени Слой					
Наладка Поверка Температурный график Конструкторский Сервис Danfoss					
Тип оборудования: Шаровые краны JIP 👻					
Тип присоединения по умолчанию: Под приварку 🗸					
Обновить поля Подобрать шаровые краны					
Очистить все поля					
Заполнить исходные данные Справочник по кранам					
Расчет Настройки Справка Закрыть					

Рисунок 22.2. Добавление полей ШК в базу данных

22.1.3. Занесение исходных данных

Перед началом подбора оборудования следует заполнить поля исходных данных. Часть значений может быть заполнена автоматически по результатам наладочного расчета. Для этого следует:

1.

Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку ^ана панели инструментов;

- Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;
- 4. В списке Тип оборудования выбрать Шаровые краны ЈІР;
- 5. В списке Тип присоединения по умолчанию выбрать необходимый тип (Под приварку или Фланцы);
- 6. Нажать кнопку Заполнить исходные данные.

ZuluThermo _ A X					
Система централизованного теплоснабжени Слой					
Наладка Поверка Температурный график Конструкторский Сервис Danfoss					
Тип оборудования: Шаровые краны JIP					
Обновить поля Подобрать шаровые краны					
Очистить все поля					
Заполнить исходные данные Справочник по кранам					
Расчет Настройки Справка Закрыть					

Рисунок 22.3. Заполнение исходных данных по ШК

В результате в базу автоматически добавиться информация о типе присоединения, рабочем давлении, типе привода и внутреннем диаметре шаровых кранов. Если диаметр подводящего трубопровода не соответствует ни одному из диаметров базы данных Danfoss, будет выдано предупреждение. Например:

Предупреждение Z301: ID=17 Не найден подходящий внутренний диаметр подающего трубопровода для ШК

Примечание

Далее пользователь может уточнить исходные данные для каждого запорного устройства в ручном режиме. В частности, наличие электрического привода и наличие блока управления задается только вручную.

22.1.4. Подбор ШК

После занесения исходной информации можно провести подбор оборудования, для этого следует:

1.

Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку ^ана панели инструментов;

- Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;
- 4. В списке Тип оборудования выбрать Шаровые краны ЈІР;

5. Нажать кнопку Подобрать шаровые краны. Поля результатов заполнятся кодами ШК и кодами электрических приводов ШК (если они есть) из справочника Danfoss.

ZuluThermo	_ • ×					
Система централизованного теплоснабжени Слой						
Наладка Поверка Температурный график Конструкторский Сервис	Danfoss					
Тип оборудования: Шаровые краны JIP Тип присоединения по умолчанию: Под приварку	5					
Пицоорать шаровые краны						
Заполнить исходные данные Справочник по кранам						
Расчет Настройки Справка Закрыть						

Рисунок 22.4. Подбор шаровых кранов

22.1.5. Очистка полей по ШК

Для очистки полей по шаровым кранам следует:

1.

Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку ана панели инструментов;

- Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;
- 4. В списке Тип оборудования выбрать Шаровые краны ЈІР;
- 5. Нажать кнопку Очистить все поля.

ZuluThermo	_ • ×					
Система централизованного теплоснабжени Слой						
Наладка Поверка Температурный график Конструкторский Сервис Danfoss						
Тип оборудования: Шаровые краны JIP Тип присоединения по умолчанию: Под приварку						
Обновить поля Подобрать шаровые краны						
Очистить все поля						
Заполнить исходные данные Справочник по кранам						
Расчет Настройки Справка Закрыть						

Рисунок 22.5. Очистка полей по ШК

22.1.6. Открытие справочника ШК Danfoss

Для открытия справочника по шаровым кранам Danfoss следует:

1.

Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку ана панели инструментов;

- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;
- 4. В списке Тип оборудования выбрать Шаровые краны ЈІР;
- 5. Нажать кнопку Справочник по кранам. Откроется окно справочника.

Шаровые краны						Привода	Привода		
Код	Присоединение	Дy	Py	Привод		Код	Ду ШК	Привод	
065n0100	Под приварку	15	40	Рукоятка		065N8199	65	AUMA, 3 x 380 B, IP67	
065n0105	Под приварку	20	40	Рукоятка		065N8199	80	AUMA, 3 x 380 B, IP67	
065n0110	Под приварку	25	40	Рукоятка		065N8200	100	AUMA, 3 x 380 B, IP67	
065n0115	Под приварку	32	40	Рукоятка	-	065N8205	125	AUMA, 3 x 380 B, IP67	
065n0120	Под приварку	40	40	Рукоятка	=	065N8205	150	AUMA, 3 x 380 B, IP67	
065n0125	Под приварку	50	40	Рукоятка		065N8215	200	AUMA, 3 x 380 B, IP67	
)65n4280	Под приварку	65	25	Рукоятка		065N8220	250	AUMA, 3 x 380 B, IP67	
)65n4285	Под приварку	80	25	Рукоятка		065N8225	300	AUMA, 3 x 380 B, IP67	
)65n0140	Под приварку	100	25	Рукоятка		065N8225	350	AUMA, 3 x 380 B, IP67	
65n0745	Под приварку	125	25	Рукоятка		065N8235	400	AUMA, 3 x 380 B, IP67	
65n0750	Под приварку	150	25	Рукоятка		065N8240	500	AUMA, 3 x 380 B, IP67	
065n0755	Под приварку	200	25	Рукоятка		065N8240	600	AUMA, 3 x 380 B, IP67	
65n0151	Под приварку	150	25	Редуктор		065N8399	65	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IPE	
065n0156	Под приварку	200	25	Редуктор		065N8399	80	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IPE	
)65n0161	Под приварку	250	25	Редуктор		065N8400	100	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IPE	
065n0166	Под приварку	300	25	Редуктор		065N8405	125	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IP7	
065n0171	Под приварку	350	25	Редуктор		065N8405	150	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IP7	
065n0176	Под приварку	400	25	Редуктор		065N8415	200	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IP7	
65n0181	Под приварку	500	25	Редуктор		065N8420	250	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IP7	
065n0186	Под приварку	600	25	Редуктор		065N8425	300	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IP7	
065n0300	Фланцы	15	40	Рукоятка		065N8425	350	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IP7	
065n0305	Фланцы	20	40	Рукоятка		065N8435	400	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IP7	
65n0310	Фланцы	25	40	Рукоятка		065N8440	500	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IP7	
65n0315	Фланцы	32	40	Рукоятка		065N8440	600	АUMA с блоком управления AUMA MATIC AM 01.1, 3 x 380 B, IP7	
)65n0320	Фланцы	40	40	Рукоятка					
)65n0325	Фланцы	50	40	Рукоятка					
J65n4281	Фланцы	65	25	Рукоятка	-			Закрыл	

Рисунок 22.6. Справочник ШК Danfoss

22.1.7. Пример подбора шаровых кранов Danfoss

Подбор шаровых кранов следует проводить после проведения наладочного расчета. Далее приведен пример подбора:

1.

Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку анели инструментов;

- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;
- 4. В списке Тип оборудования выбрать Шаровые краны ЈІР.

ZuluThermo	_ • ×				
Система централизованного теплоснабжени Слой					
Наладка Поверка Температурный график Конструкторский Сервис	Danfoss				
Тип оборудования: Шаровые краны JIP 🔻					
Тип присоединения по умолчанию: Под приварку 🗸					
Обновить поля Подобрать шаровые краны					
Очистить все поля					
Заполнить исходные данные Справочник по кранам					
Расчет Настройки Справка Закрыть					

Рисунок 22.7. Открытие окна подбора ШК

5. Для добавления полей в базу данных нажать кнопку Обновить поля.

ZuluThermo	_ • ×				
Система централизованного теплоснабжени Слой					
Наладка Поверка Температурный график Конструкторский Сервис Da	infoss				
Тип оборудования: Шаровые краны JIP					
Обновить поля Подобрать шаровые краны					
Очистить все поля					
Заполнить исходные данные Справочник по кранам					
Расчет Настройки Справка Закрыть					

Рисунок 22.8. Добавление полей ШК в базу данных

- 6. В списке Тип присоединения по умолчанию выбрать необходимый тип (Под приварку или Фланцы);
- 7. Для автоматического занесения исходных данных нажать кнопку Заполнить исходные данные.

ZuluThermo _ A X				
Система централизованного теплоснабжени				
Наладка Поверка Температурный график Конструкторский Сервис Danfoss				
Тип оборудования: Шаровые краны JIP Тип присоединения по умолчанию: Под приварку -				
Обновить поля Подобрать шаровые краны				
Очистить все поля				
Заполнить исходные данные Справочник по кранам				
Расчет Настройки Справка Закрыть				

Рисунок 22.9. Добавление полей ШК в базу данных

- 8. Вручную по каждому объекту уточнить исходные данные. Например, тип и наличие электропривода;
- 9. После заполнения исходных данных нажать кнопку Подобрать шаровые краны.

ZuluThermo	_ • ×
Система централизованного теплоснабжени	Слой
Наладка Поверка Температурный график Конструкторский Сервис	Danfoss
Тип оборудования: Шаровые краны JIP	
Обновить поля Подобрать шаровые краны	
Очистить все поля	
Заполнить исходные данные Справочник по кранам	
Расчет Настройки Справка Закрыть	

Рисунок 22.10. Подбор шаровых кранов

Поля результатов заполнятся кодами ШК и кодами электрических приводов ШК (если они есть) из базы данных Danfoss.

Задвижка	_ 🗆 •	×				
📑 H 4 🕨 H 🔁 🖬 🗣 🖬 🖆 🖆						
Текущая запись Запрос База Ответ		►				
🗆 Danfoss		*				
🗆 Подающий трубопровод						
Код ШК на подающем	065N0157					
Тип присоединения ШК на подающем	Под приварку					
Рабочее давление ШК на подающем	25					
Тип привода ШК на подающем	Электропривод АUMA					
Код привода ШК на подающем 065N8215						
Привод ШК на подающем	Привод ШК на подающем AUMA, 3 x 380 B, IP67					
Управление приводом ШК на подающем	Без блока управления					
Внутренний диаметр ШК на подающем, мм	200					
🗆 Обратный трубопровод						
Код ШК на обратном	065N0157					
Тип присоединения ШК на обратном	Под приварку					
Рабочее давление ШК на обратном	25					
Тип привода ШК на обратном	Электропривод АUMA					
Код привода ШК на обратном 065N8215						
Привод ШК на обратном	AUMA, 3 x 380 B, IP67					
Управление приводом ШК на обратном	Без блока управления 🖵					
Внутренний диаметр ШК на обратном, мм	200	Ŧ				

Рисунок 22.11. Результаты подбора ШК

22.1.8. Справочная информация по полям ШК Danfoss

Жирным шрифтом выделены поля для записи результатов подбора ШК. Остальные поля являются полями исходных данных.

Имя поля	Пользовательское наименование поля	Описание
DanCode_pod DanCode_obr	Код ШК на подающем Код ШК на обратном	Кодовый номер шарового крана типа JIP, используемый для заказа шарового крана у Danfoss либо партнёров.
DanConnect_pod	Тип присоединения ШК на подающем	Различают фланцевое и присоединение под приварку. Выбор производится в
DanConnect_obr	Тип присоединения ШК на обратном	зависимости от местных правил и норм.
DanPy_pod	Рабочее давление ШК на подающем	Наибольшее избыточное рабочее давление при температуре рабочей среды 20 °C,
DanPy_obr	Рабочее давление ШК на обратном	при котором обеспечивается заданный срок службы соединений трубопроводов и арматуры, имеющих определенные размеры, обоснованные расчетом на прочность при выбранных материалах и характеристиках прочности их при температуре 20 °C. Ру шарового крана выбирается из условия, что Ру

Имя поля	Пользовательское наименование поля	Описание
		больше избыточного давления воды в трубопроводной системе сети.
DanPrivType_pod	Тип привода ШК на подающем	В зависимости от Ду на шаровые краны типа JIP возможна
DanPrivType_obr	Тип привода ШК на обратном	установка следующих типов управляющих элементов: Рукоятка, Ручной редукторный привод, Электрический привод типа AUMA.
DanPrivCode_pod	Код привода ШК на подающем	Кодовый номер электрического привода типа AUMA, используемый для заказа
DanPrivCode_obr	Код привода ШК на обратном	электрического привода у Danfoss либо партнёров.
DanPrivod_pod	Привод ШК на подающем	Электрический привод AUMA - двухпозиционное управление (Открыть/
DanPrivod_obr	Привод ШК на обратном	Закрыть) шаровым краном в зависимости от входного сигнала. Электрический привод AUMA с блоком управления AUMA MATIC AM позволяет дополнительно управлять шаровым краном вручную, с помощью кнопок на блоке управления.
DanPrivBlock_po	ШК на подающем	Признак наличия блока управления приводом.
DanPrivBlock_obr	Управление приводом ШК на обратном	
DanDy_pod	Внутренний диаметр ШК на подающем, мм	Внутренние диаметры шаровых кранов. Заполняются автоматически значениями
DanDy_obr	Внутренний диаметр ШК на обратном, мм	диаметров участков, входящих в задвижки, при заполнении исходных данных.

22.2. Подбор регуляторов прямого действия фирмы Danfoss

Подбор регуляторов фирмы Danfoss производится для узловых элементов с типом Дросселирующий узел со следующими режимами: Вычисляемая шайба, Устанавливаемая шайба, Регулятор напора, Регулятор давления в подающем, Регулятор давления в обратном, Регулятор напора на обратном. Оборудование необходимо подбирать после проведения наладочного расчета.

- см. "Открытие окна подбора";
- см. "Добавление полей в базу данных";
- см. "Настройка исходных данных для подбора";
- см. "Подбор регуляторов давления";

- см. "Очистка полей по регуляторам";
- см. "Пример подбора регуляторов Danfoss";
- см. "Справочная информация по полям регуляторов Danfoss".

22.2.1. Открытие окна подбора

Для открытия окна подбора регуляторов следует:

- 1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку на панели инструментов;
- Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;
- 4. В списке Тип оборудования выбрать Регуляторы давления.

ZuluThermo	_ • ×	
Система централизованного теплоснабжени Слой		
Наладка Поверка Температурный график Конструкторский Сервис Danfoss		
Тип оборудования: Регуляторы давления		
Обновить поля Подобрать регуляторы		
Очистить все поля		
Опции		
🔲 Задать рабочее давление: 16 бар 👻		
Подбор под замену шайб		
Расчет Настройки Справка Закрыть		

Рисунок 22.12. Открытие окна подбора РД

22.2.2. Добавление полей в базу данных

По умолчанию в базе данных по дросселирующим устройствам поля для подбора регуляторов отсутствуют. Для их добавления в базу следует:

1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку панели инструментов;

2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;

- 4. В списке Тип оборудования выбрать Регуляторы давления;
- 5. Нажать кнопку Обновить поля. В результате в БД по дросселирующим устройствам добавятся поля для регуляторов давления.

ZuluThermo	_ • ×	
Система централизованного теплоснабжени	Слой	
Наладка Поверка Температурный график Конструкторский Сервис [Danfoss	
Тип оборудования: Регуляторы давления 🔻		
Обновить поля Подобрать регуляторы		
Очистить все поля		
Опции		
Задать рабочее давление: 16 бар —		
🔲 Подбор под замену шайб		
Расчет Настройки Справка Закрыть		

Рисунок 22.13. Добавление полей по регуляторам в базу данных

22.2.3. Настройка исходных данных для подбора

Перед началом подбора оборудования следует заполнить поля исходных данных. Исходные данные для подбора оборудования (давления, температура, расход) определяются по результатам наладочного расчета.

Часть значений может быть заполнена автоматически. Для этого следует:

- 1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку на панели инструментов;
- Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;
- 4. В списке Тип оборудования выбрать Регуляторы давления;
- 5. Рабочее давление регулятора определяется по наладочному расчету. При включенной опции Задать рабочее давление, давление можно задать вручную;
- 6. При включенной опции Подбор под замену шайб, оборудование будет так же подбираться и для дросселирующих узлов с шайбами, которые можно будет в дальнейшем заменить соответствующими регуляторами.

Важно

При расчете под замену шайбы, шайба должна быть установлена только либо на подающем, либо на обратном трубопроводе. Если дросселирующий узел имеет шайбы на обоих трубопроводах, при подборе оборудования будет выдано сообщение об ошибке.

ZuluThermo _ ×		
Система централизованного теплоснабжени Слой		
Наладка Поверка Температурный график Конструкторский Сервис Danfoss		
Тип оборудования: Регуляторы давления 💌		
Обновить поля Подобрать регуляторы		
Очистить все поля		
Опции		
📝 Задать рабочее давление: 🛛 16 бар 🔻		
📝 Подбор под замену шайб		
Расчет Настройки Справка Закрыть		

Рисунок 22.14. Настройка исходных данных для подбора

22.2.4. Подбор регуляторов давления

После занесения исходной информации можно провести подбор оборудования, для этого следует:

1.

- Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку ана панели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;
- 4. В списке Тип оборудования выбрать Регуляторы давления;
- 5. Настроить исходные данные;
- 6. Нажать кнопку Подобрать регуляторы

ZuluThermo _ ×		
Система централизованного теплоснабжени Слой		
Наладка Поверка Температурный график Конструкторский Сервис Danfoss		
Тип оборудования: Регуляторы давления 🔻		
Обновить поля Подобрать регуляторы		
Очистить все поля		
Опции		
📝 Задать рабочее давление: 🛛 16 бар 🔻		
☑ Подбор под замену шайб		
Расчет Настройки Справка Закрыть		

Рисунок 22.15. Запуск подбора регуляторов

7. В результате поля базы данных заполнятся кодами приборов и их параметрами.

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГТ. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Дросселирующий узел 💶 🔺 🗙		
📰 k 4 > X k 🗟 🔹 🗣 🗳 🖆 🖄 👘		
Текущая запись Запрос База Ответ		
Температура воды в обратном трубопроводе, °С	70	
Danfoss		
Ду трубы, мм	150	
Температура в месте установки,*С	70	
Давление до, бар	0.21	
Давление после, бар	0.78	
Регулируемый перепад давлений, бар		
🗆 Клапан		
Тип клапана	VFG 2	
Код клапана	065B2424	
Ду клапана, мм	150	
Условная пропускная способность, м3/ч	280	
Рабочее давление клапана, бар	40	
Материал клапана	Сталь GP240GH (GS-C 25)	
Коэффициент кавитации	0.3	
🗆 Регулирующий блок		
Тип регулирующего блока	AFA	
Код регулирующего блока	003G1011	
Нижняя настройка, бар	0.15	
Верхняя настройка, бар	1.2	
Текущая настройка, бар	0.78	
🗆 Импульсная трубка		
Тип импульсной трубки	AF	
Код импульсной трубки	003G1391	
Количество	1	

Рисунок 22.16. Результат подбора регуляторов

22.2.5. Очистка полей по регуляторам

Для очистки полей по регуляторам Danfoss следует:

- 1.
- Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку анели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;
- 4. В списке Тип оборудования выбрать Регуляторы давления;
- 5. Нажать кнопку Очистить все поля.

ZuluThermo _ * ×		
Система централизованного теплоснабжени Слой		
Наладка Поверка Температурный график Конструкторский Сервис Danfoss		
Тип оборудования: Регуляторы давления 🔻		
Обновить поля Подобрать регуляторы		
Очистить все поля		
Опции		
🗐 Задать рабочее давление: 🛛 16 бар 🕞		
Подбор под замену шайб		
Расчет Настройки Справка Закрыть		

Рисунок 22.17. Очистка полей по регуляторам

22.2.6. Пример подбора регуляторов Danfoss

Перед началом подбора оборудования следует обязательно провести наладочный расчет. После успешного проведения расчета можно подбирать регуляторы, для этого следует:

- 1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку на панели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Danfoss;
- 4. В списке Тип оборудования выбрать Регуляторы давления.

ZuluThermo	_ * ×	
Система централизованного теплоснабжени Слой		
Наладка Поверка Температурный график Конструкторский Сервис Danfoss		
Тип оборудования: Регуляторы давления		
Обновить поля Подобрать регуляторы		
Очистить все поля		
Опции		
🔲 Задать рабочее давление: 16 бар 👻		
Подбор под замену шайб		
Расчет Настройки Спра	авка Закрыть	

Рисунок 22.18. Открытие окна подбора

5. Нажать кнопку Обновить поля.

ZuluThermo	_ • ×	
Система централизованного теплоснабжени Слой		
Наладка Поверка Температурный график Конструкторский Сервис Danfoss		
Тип оборудования: Регуляторы давления 💌		
Обновить поля Подобрать регуляторы		
Очистить все поля		
Опции		
🔲 Задать рабочее давление: 🛛 16 бар 🕞		
Подбор под замену шайб		
Расчет Настройки Справка Закрыть		

Рисунок 22.19. Добавление полей по регуляторам в базу данных

6. Настроить исходные данные.

При включенной опции Задать рабочее давление, давление можно задать вручную. Рабочее давление регулятора определяется по наладочному расчету.

При включенной опции Подбор под замену шайб, оборудование будет так же подбираться и для дросселирующих узлов с шайбами, которые можно будет в дальнейшем заменить соответствующими регуляторами;

7. Нажать кнопку Подобрать регуляторы.

ZuluThermo	_ + ×	
Система централизованного теплоснабжени	Слой	
Наладка Поверка Температурный график Конструкторский Сервис	Danfoss	
Тип оборудования: Регуляторы давления 💌		
Обновить поля Подобрать регуляторы		
Очистить все поля		
Опции		
📝 Задать рабочее давление: 🛛 16 бар 🛛 🔻		
🔽 Подбор под замену шайб		
Расчет Настройки Справка Закрыть		

Рисунок 22.20. Запуск подбора регуляторов

8. В результате поля базы данных заполнятся кодами приборов и их параметрами.

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГТ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Дросселирующий узел 💶 🗖 🔺 🗙		
🔠 k 4 > X 🗟 🖬 🕰 - 🕒 🖄 🖆 🕍 🖀 🖀		
Текущая запись Запрос База Ответ		
Температура воды в обратном трубопроводе, °С	70	
Danfoss		
Ду трубы, мм	150	
Температура в месте установки,*С	70	
Давление до, бар	0.21	
Давление после, бар	0.78	
Регулируемый перепад давлений, бар		
🗆 Клапан		
Тип клапана	VFG 2	
Код клапана	065B2424	
Ду клапана, мм	150	
Условная пропускная способность, м3/ч	280	
Рабочее давление клапана, бар	40	
Материал клапана	Сталь GP240GH (GS-C 25)	
Коэффициент кавитации	0.3	
🗆 Регулирующий блок		
Тип регулирующего блока	AFA	
Код регулирующего блока	003G1011	
Нижняя настройка, бар	0.15	
Верхняя настройка, бар	1.2	
Текущая настройка, бар	0.78	
🗆 Импульсная трубка		
Тип импульсной трубки	AF	
Код импульсной трубки	003G1391	
Количество	1	

Рисунок 22.21. Результат подбора регуляторов

22.2.7. Справочная информация по полям регуляторов Danfoss

В результате обновления (добавления) полей, в базу данных добавляются следующая информация:

Имя поля	Пользовательское наименование поля	Описание
DanDy	Ду трубы, мм	Условный диаметр прохода трубы
DanT	Температура в месте установки, °С	Температура теплоносителя в месте установки шайбы (регулятора)
DanP1	Давление до, бар	Давление до клапана
DanP2	Давление после, бар	Давление после клапана
DandP	Регулируемый перепад давлений, бар	Поддерживаемый регулятором перепад давления (только для РПД)
DanKlType	Тип клапана	Тип клапана по классификации Danfoss

Имя поля	Пользовательское наименование поля	Описание			
DanKlCode	Код клапана	Код регулирующего клапана, используемый для заказа у Danfoss или партнеров			
DanKlDy	Ду клапана, мм	Условный диаметр прохода клапана			
DanKlKvs	Условная пропускная способность, м3/ч	Условная пропускная способность клапана			
DanKlPy	Рабочее давление клапана, бар	Наибольшее избыточное рабочее давление при температуре рабочей среды 20 °C, при котором обеспечивается заданныйсрок службы соединений трубопроводов и арматуры,имеющих определенные размеры, обоснованные расчетом напрочность при выбранных материалах и характеристиках прочности их при температуре 20 °C.			
DanKlMat	Материал клапана	Материал корпуса клапана			
DanKlZ	Коэффициент кавитации	Z - конструктивная характеристика клапана, используется при определении максимальных потерь давления на элементе.			
DanRbType	Тип регулирующего блока	В зависимости от типа регулятора устанавливаются различные управляющие блоки:			
		AFD - регулятор «после себя»			
		АFА - регулятор «до себя»			
		АFР - регулятор перепада давления			
DanRbCode	Код регулирующего блока	Код регулирующего блока, используемый для заказа у Danfoss или партнеров			
DanRbPmin	Нижняя настройка, бар	Нижний предел диапазона настройки регулирующего блока			
DanRbPmax	Верхняя настройка, бар	Верхний предел диапазона настройки регулирующего блока			
DanRbP	Текущая настройка, бар	Текущая требуемая настройка регулятора			
DanItType	Тип импульсной трубки	Тип импульсной трубки для комплектации регулятора расхода (давления)			
DanItCode	Код импульсной трубки	Код импульсной трубки, используемый для заказа у Danfoss или партнеров			
DanItNum	Количество	Количество единиц для заказа			

Глава 23. Формулы

23.1. Введение

Ляляля

23.2. Определение расчетных расходов теплоносителя

Расчетный расход сетевой воды на систему отопления (т/ч), присоединенную по зависимой схеме, можно определить по формуле:

$$G_{c.p.} = \frac{Q_{o.p.} \cdot 1000}{C \cdot (\tau_{1.p.} - \tau_{2.p.})}$$

Рисунок 23.1. Расчетный расход сетевой воды на СО

- где Qo.p. расчетная нагрузка на систему отопления, Гкал/ч;
- τ1.р. температура воды в подающем трубопроводе тепловой сети при расчетной температуре наружного воздуха для проектирования отопления, ° С;
- т2.р. температура воды в обратном трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, °C;

Расчетный расход воды в системе отопления определяется из выражения:

$$G_{c.o.p.} = \frac{Q_{o.p.} \cdot 1000}{C \cdot (\tau_{3.p.} - \tau_{2.p.})}$$

Рисунок 23.2. Расчетный расход воды в системе отопления

• τ3.р. - температура воды в подающем трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, ° С;

Относительный расход сетевой воды Goth. на систему отопления:

$$G_{omh.} = \frac{G_{c.}}{G_{c.p.}}$$

Рисунок 23.3. Относительный расход сетевой воды на СО

• где Gc. - текущее значение сетевого расхода на систему отопления, т/ч.

Относительный расход тепла Qoth. на систему отопления:

Рисунок 23.4. Относительный расход тепла на СО

- где Qo. текущее значение расхода теплоты на систему отопления, Гкал/ч
- где Qo.p. расчетное значение расхода теплоты на систему отопления, Гкал/ч

Расчетный расход теплоносителя в системе отопления присоединенной по независимой схеме:

$$G_{c.o.} = \frac{Q_{o.p.} \cdot 1000}{C \cdot (t_{1.p.} - t_{2.p.})}$$

Рисунок 23.5. Расчетный расход на СО по независимой схеме

• где: t1.p., t2.p. - расчетная температура нагреваемого теплоносителя (второй контур) соответственно на выходе и входе в теплообменный аппарат, °С;

Расчетный расход теплоносителя в системе вентиляции определяется по формуле:

$$G_{c.6.} = \frac{Q_{6.p.} \cdot 1000}{\mathcal{C} \cdot (\tau_{1.p.} - \tau_{2.6.p.})}$$

Рисунок 23.6. Расчетный расход на СВ

- где: Qв.р. расчетная нагрузка на систему вентиляции Гкал/ч;
- т2.в.р. расчетная температура сетевой воды после калорифера системы вентиляции, °С.

Расчетный расход теплоносителя на систему горячего водоснабжения (ГВС) для открытых систем теплоснабжения определяется по формуле:

$$G_{\mathcal{BC.}p.} = \frac{Q_{\mathcal{BC.}}^{cp.} \cdot 1000}{\mathcal{C} \cdot (t_{\mathcal{B}.} - t_{xg.})}$$

Рисунок 23.7. Расчетный расход на открытые системы ГВС

Расход воды на горячее водоснабжение из подающего трубопровода тепловой сети:

$$G_{n.rec.} = \beta \cdot G_{rec.p.}$$

Рисунок 23.8. Расход на ГВС из подающего

• где: β - доля отбора воды из подающего трубопровода, определяемая по формуле:

$$\beta = \frac{t_{26.} - \tau_{2.}}{\tau_{1.} - \tau_{2.}}$$

Рисунок 23.9. Доля отбора воды из подающего

Расход воды на горячее водоснабжение из обратного трубопровода тепловой сети:

$$G_{0.26C.} = (1-\beta) \cdot G_{26C.p.}$$

Рисунок 23.10. Расход на ГВС из обратного

Расчетный расход теплоносителя (греющей воды) на систему ГВС для закрытых систем теплоснабжения при параллельной схеме включения подогревателей на систему горячего водоснабжения:

$$G_{\rm PBC.p.} = \frac{Q_{\rm PBC.p.} \cdot 1000}{\mathcal{C} \cdot (\tau_{1.u.} - \tau_{2.m.u.})}$$

Рисунок 23.11. Расход на ГВС 1 контура при параллельной схеме

- где: τ1.и. температура сетевой воды в подающем трубопроводе в точке излома температурного графика, °C;
- т2.т.и. температура сетевой воды после подогревателя в точке излома температурного графика (принимается = 30 °C);

Расчетная нагрузка на ГВС

При наличии баков аккумуляторов

$$Q_{\rm PBC, p.} = Q_{\rm PBC.}^{\rm cp.}$$

Рисунок 23.12.

При отсутствии баков аккумуляторов

$$Q_{\mathcal{BC.}p.} = Q_{\mathcal{BC.}}^{\max.}$$

Рисунок 23.13.

Диаметр горловины элеватора определяется по формуле

$$d_{e} = 8.5 \cdot \sqrt[4]{\frac{G_{e}^{2} \cdot (1+u)^{2}}{\Delta H_{co}}}$$

Рисунок 23.14. Диаметр горловины элеватора

- где Gc расчетный расход сетевой воды (из тепловой сети) на систему отопления, т/ч
- и расчетный коэффициент смешения определяемый по формуле

$$u = \frac{\tau_{1.p.} - \tau_{3.p.}}{\tau_{3.p.} - \tau_{2.p.}}$$

Рисунок 23.15. Расчетный коэффициент смешения

- Qo.p. расчетный тепловой поток на отопление, Гкал/ч;
- с удельная теплоемкость воды, ккал/(ч*кг*°С);
- τ1.р. температура воды в подающем трубопроводе тепловой сети при расчетной температу-ре наружного воздуха для проектирования отопления, °С;
- τ3.р. температура воды в подающем трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, °C;

- τ2.р. температура воды в обратном трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, °C;
- При выборе элеватора принимается стандартный элеватор с ближайшим меньшим диаметром горловины. Номера элеваторов и диаметр горловины приведены в таблице ниже

Таблица 23.1. Номера элеваторов и диаметры горловины

№ элеватора	1	2	3	4	5	6	7
D горловины, мм	15	20	25	30	35	47	59

Минимально необходимый напор ∆Н эл.мин., м., перед элеватором для преодоления гидравлического сопротивления элеватора и присоединенной к нему системы отопления (без учета гидравлического сопротивления трубопроводов, оборудования, приборов и арматуры до места присоединения элеватора) определяется по формуле:

$$\Delta H_{\text{an.min.}} = 1,4 \cdot \Delta H_{co} \cdot (1+u)^2$$

Рисунок 23.16. Минимально необходимый напор перед элеватором

Диаметр сопла элеватора dc, мм., определяется по формуле

$$d_c = 9, 6 \cdot \sqrt[4]{\frac{G_c^2}{\Delta H_{\text{s.m.in.}}}}$$

Рисунок 23.17. Диаметр сопла элеватора

Диаметр сопла определяется с точностью до десятых долей миллиметра с округлением в меньшую сторону и принимается при расчетах не менее 3 мм.

Диаметр отверстия дроссельной диафрагмы определяется по формуле:

$$d_{op.} = 10 \cdot \sqrt[4]{\frac{G_c^2}{\Delta H_{us.}}}$$

Рисунок 23.18. Диаметр дроссельной диафрагмы

Минимальный диаметр отверстия дроссельной диафрагмы принимается равным 3 мм. При необходимости устанавливается последовательно несколько диафрагм соответственно с большими диаметрами отверстий.

Пересчет диаметра сопла элеватора при изменившемся коэффициенте смешения производится по формуле:

$$d_c^* = d_c \cdot \frac{1+u}{1+u^*}$$

Рисунок 23.19. Пересчет диаметра сопла элеватора

- гле d*с новый диаметр сопла, мм
- и* новый коэффициент смешения.

Связь диаметра сопла с диаметром горловины и коэффициентом смешения можно выразить через зависимость:

$$d_{c} = \frac{10 \cdot d_{e}}{\sqrt{\frac{0,78}{Q_{np.}^{2}} \cdot (1+u)^{2} \cdot d_{e}^{4} + 0,6 \cdot (1+u)^{2} - 0,4 \cdot u^{2}}}$$

Рисунок 23.20. Связь диаметра сопла с диаметром горловины и коэффициентом смешения

• гле Gпр. - - приведенный расход смешенной воды (т/ч), определяемый по формуле:

$$G_{np.} = \frac{Q_{o.p.} \cdot 1000}{\sqrt{\Delta H_{co}} \cdot C \cdot (\tau_{3.p.} - \tau_{2.p.})}$$

Рисунок 23.21. Приведенный расход смешенной воды

Скорость движения воды на участке трубопровода определяется по формуле:

$$V_{y_{4.}} = \frac{G_{y_{4.}} \cdot 4}{3,6 \cdot 3,14 \cdot d_{y_{4.}}^2}$$

Рисунок 23.22. Скорость движения воды

Потери напора на участке трубопровода определяются по формуле:

$$\Delta H_{y_{u_{.}}} = \lambda \cdot \frac{l_{y_{u_{.}}}}{d_{_{GH_{.}}}} \cdot \frac{V^2_{_{y_{u_{.}}}}}{2 \cdot g}$$

Рисунок 23.23. Потери напора на участке

• Где λ - коэффициент гидравлического сопротивления.

Коэффициент гидравлического сопротивления может быть определен по формуле Колбрука - Уайта:

$$\lambda = \left[-2 \cdot \lg \left(\frac{2.51}{\operatorname{Re} \cdot \sqrt{\lambda}} + \frac{k_{\text{\tiny JK.}}}{3.7 \cdot d_{\text{\tiny GH.}}} \right) \right]^{-2}$$

Рисунок 23.24. Формуле Колбрука-Уайта

Либо по экспериментальным данным по формуле Прандтля - Никурадзе

$$\frac{1}{\lambda} = c \cdot \lg a \frac{d_{GH.}}{k_{JK.}} = c \cdot \lg \frac{d_{GH.}}{k_{JK.}} + b$$

Рисунок 23.25. Формула Прандтля-Никурадзе

Где с=2.0, а=3.7, b=1.14

Или по формуле Б.Л. Шифринсона

$$\lambda = 0,11 \cdot \left(\frac{k_{\text{SK.}}}{d_{\text{GH.}}}\right)^{0.25}$$

Рисунок 23.26. Формула Шифринсона

Или по формуле А.Д. Альтшуля

$$\lambda = 0,11 \cdot \left(\frac{k_{\text{\tiny 3K.}}}{d_{\text{\tiny 6H.}}} + \frac{68}{\text{Re}}\right)^{0.25}$$

Рисунок 23.27. Формула Альтшуля

Потери напора на потребителях определяется по формуле

$$\Delta H_{nom.} = S_{nom.} \cdot G_{nom.}^2$$

Рисунок 23.28. Потери напора на потребителе

где: Ѕпот.- сопротивление потребителя, м/(т/час)2

Для элеваторного присоединения системы отопления находится как сумма сопротивления трубопроводов CO и сопротивления сопла элеватора:

$$S_{co.mp.} = \frac{\Delta H_{co.}}{G_c^2 \cdot (1+u)^2}$$

Рисунок 23.29. Потери напора на потребителе

- где Gc расчетный расход сетевой воды (из тепловой сети) на систему отопления, т/ч.
- Δ Нсо - потери напора в системе отопления (после элеватора) при расчетном расходе воды, м, (как правило 1-2 м.вод.ст.);

Сопротивление элеваторного узла определяется по формуле:

$$S_{\text{sn.}} = \left(\frac{9,6}{d_c}\right)^4$$

Рисунок 23.30. Сопротивление элеваторного узла

Общее сопротивление системы отопления определяется по формуле:

$$S_{co.} = S_{co.mp.} + S_{y.n.}$$

Рисунок 23.31. Общее сопротивление СО

Для независимой схемы присоединения системы отопления, сопротивление трубного пространства теплообменного аппарата определяется по формуле:

$$S_{mo.co.} = \frac{\Delta H_{mo.co.}}{G_{mo.co.}^2}$$

Рисунок 23.32. Сопротивление СО при незав. схеме

- ΔΗто.со. испытательные (расчетные) потери напора в трубном пространстве теплообменников СО, м;испытательные (расчетные) потери напора в трубном пространстве теплообменников СО, м;
- Gто.co. испытательный (расчетный) расход теплоносителя в трубном пространстве тепло-обменников СО, т/час.

Сопротивление теплообменников ГВС определяются по аналогичной формуле

Сопротивление системы вентиляции определяется по формуле:

$$S_{CG.} = \frac{\Delta H_{CG.}}{G_{CG.}^2}$$

Рисунок 23.33. Сопротивление системы вентиляции

- ΔНсв. -расчетные потери напора в системе вентиляции, м;
- Gcb. расчетный расход воды в системе вентиляции (CB), т/ч.

Суммарное сопротивление потребителя вычисляется в зависимости от типа схемного решения по правилу определения сопротивления последовательно (параллельно) соединенных элементов.

Глава 24. Как получить обновление?

Пользуясь нашим программным обеспечением важно следить, чтобы у Вас была последняя, наиболее полная версия, так как наши разработчики постоянно развивают возможности системы, и пользуясь устаревшей версией Вы существенно ограничиваете свои возможности.

Чтобы определить какая у вас установлена версия Zulu выберите в меню Справка О программе..., в появившемся окне обратите внимание на последние цифры, написанные в строке Версия:

Рисунок 24.1. Номер текущей версии

Скачать обновление можно по FTP: ftp://ftp.politerm.com.ru/ или на www.politerm.com.ru (раздел Download). Для скачивания файлов рекомендуем воспользоваться программами докачки типа GetRight, Go!zilla и т.п.

Обновление справочной системы

Справочная система Zulu, ZuluThermo и ZuluHydro также постоянно обновляется, поэтому рекомендуем скачать последнюю версию файла справки (Zulu.chm, ZuluThermo.chm, ZuluHydro.chm) и переписать его вместо имеющегося в папке, где установлена ГИС Zulu.

После установки обновления

В ходе обновления программного обеспечения, в расчетную часть могут быть добавлены новые поля баз данных по объектам. Этих полей может не оказаться в базах данных вашего слоя из-за более старой версии программы.

После установки обновления программы, при запуске расчетов в окне сообщений может появится следующее сообщение:

Не записать результат в базу по потребителям: не найдено поле 'H_pod'

А также появится окно следующего содержания:

Teplo	×
(i)	В некоторых таблицах не найден ряд полей!
~	Для добавления недостающих полей: а) Закройте все таблицы b) Перейдите в закладку "Сервис" с) Нажмите кнопку "Обновить структуры таблиц"
	OK

Нажать ОК и следовать инструкции приведенной в вышеприведенном окне.

- 1. Закройте все таблицы. Если по каким либо объектам сетей открыто окно семантической информации, необходимо его закрыть;
- 2. Нажать кнопку Теплогидравлические расчеты (ZuluThermo) ^С. Выбрать слой тепловой сети из списка, нажав кнопку Слой... Перейти на закладку Сервис;
- 3. Нажать кнопку Обновить структуры таблиц.

При успешном завершении операции обновления структур появится следующее сообщение:

При неудачном исходе операции обновления или при повторном появлении данного предупреждения, просим обратится по телефонам или по электронной почте по адресам указанным в разделе Контактная информация [http://www.politerm.com.ru/ contacts.htm].

Приложение А. Схемы подключения

Условные обозначения, принятые при изображении схем тепловых пунктов:

- 1. ГВС система горячего водоснабжения;
- 2. СВ система вентиляции;
- 3. СО система отопления;
- 4. РР регулятор расхода;
- 5. РТ регулятор температуры;
- 6. ТСО теплообменный аппарат на систему отопления;
- 7. П1СТ подогреватель теплообменный аппарат первой (нижней) ступени на систему горячего водоснабжения;
- 8. П2СТ подогреватель теплообменный аппарат второй (верхней) ступени на систему горячего водоснабжения;
- 9. СН смесительный насос;

10.ЦНСО - циркуляционный насос системы отопления;

11 .ЦНСГВ - циркуляционный насос системы горячего

водоснабжения; 12.Э - элеватор;

13.МТП - местный тепловой пункт.

А.1. Расчетные схемы присоединения потребителей

А.1.1. Схема № 1

Потребитель с открытым водоразбором на ГВС и независимым присоединением CO и CB

А.1.2. Схема № 2

Потребитель с открытым водоразбором на ГВС и элеваторным присоединением СО

А.1.3. Схема № 3

Потребитель с открытым водоразбором на ГВС и независимым присоединением СО

А.1.4. Схема № 4

Потребитель с открытым водоразбором на ГВС и непосредственным присоединением CO

А.1.5. Схема № 5

Потребитель с открытым водоразбором на ГВС и насосным присоединением СО

А.1.6. Схема № 6

Потребитель с открытым водоразбором на ГВС и элеваторным присоединением СО

А.1.7. Схема № 7

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и элеваторным присоединением СО

А.1.8. Схема № 8

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и независимым присоединением СО

А.1.9. Схема № 9

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и насосным присоединением СО и СВ

А.1.10. Схема № 10

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и независимым присоединением СО и СВ

А.1.11. Схема № 11

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и насосным присоединением СО

А.1.12. Схема № 12

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и элеваторным присоединением СО

А.1.13. Схема № 13

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и элеваторным присоединением СО

А.1.14. Схема № 14

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и независимым присоединением СО

А.1.15. Схема № 15

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и насосным присоединением СО и СВ

А.1.16. Схема № 16

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и независимым присоединением СО и СВ

А.1.17. Схема № 17

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и насосным присоединением СО

А.1.18. Схема № 18

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и элеваторным присоединением СО

А.1.19. Схема № 19

Потребитель с параллельным подключением подогревателей ГВС и элеваторным присоединением СО

А.1.20. Схема № 20

Потребитель с параллельным подключением подогревателей ГВС и независимым присоединением СО

А.1.21. Схема № 21

Потребитель с параллельным подключением подогревателей ГВС и насосным присоединением СО и СВ

А.1.22. Схема № 22

Потребитель с параллельным подключением подогревателей ГВС и независимым присоединением СО и СВ

А.1.23. Схема № 23

Потребитель с параллельным подключением подогревателя ГВС и насосным присоединением СО

А.1.24. Схема № 24

Потребитель с параллельным подключением подогревателя ГВС и элеваторным присоединением СО

А.1.25. Схема № 25

Потребитель с вентиляционной нагрузкой

А.1.26. Схема № 26

Потребитель с открытым водоразбором и циркуляционной линией

А.1.27. Схема № 27

Потребитель с подогревателями ГВС

А.1.28. Схема № 28

Потребитель с параллельным подключением подогревателя ГВС и непосредственным присоединением СО

А.1.29. Схема № 29

Потребитель с последовательным подключением подогревателя ГВС и элеваторном присоединением СО

А.1.30. Схема № 30

Потребитель с последовательным подключением подогревателя ГВС и насосным присоединением СО

А.1.31. Схема № 31

Потребитель с последовательным подключением подогревателя ГВС и независимым присоединением СО и СВ.

А.1.32. Схема № 32

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и независимым присоединением СО

А.1.33. Схема № 33

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и независимым присоединением СО

А.1.34. Схема № 34

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС

А.2. Расчетные схемы присоединения ЦТП

А.2.1. Схема № 1

ЦТП с независимым присоединением СО и СВ

А.2.2. Схема № 2

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и независимым присоединением CO и CB

А.2.3. Схема № 3

ЦТП с параллельным подключением подогревателей ГВС и независимым присоединением СО и СВ

А.2.4. Схема № 4

ЦТП с групповым элеваторным присоединением СО

А.2.5. Схема № 5

ЦТП с двухступенчатым смешанным подключением подогревателей

А.2.6. Схема № 6

ЦТП с параллельным подключением подогревателей

А.2.7. Схема № 7

ЦТП с насосным смешением

А.2.8. Схема № 8

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и насосным смешением

А.2.9. Схема № 9

ЦТП с параллельным подключением подогревателя ГВС и насосным смешением

А.2.10. Схема № 10

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и элеваторным смешением.

А.2.11. Схема № 11

ЦТП с параллельным подключением подогревателя ГВС и элеваторным смешением

А.2.12. Схема №12

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и непосредственным присоединением СО и СВ

А.2.13. Схема № 13

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и элеваторным присоединением СО

А.2.14. Схема № 14

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и насосным присоединением СО и СВ

А.2.15. Схема № 15

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и независимым присоединением СО

А.2.16. Схема № 16

ЦТП с одноступенчатым последовательным подключением подогревателей ГВС и непосредственным присоединением СО и СВ

А.2.17. Схема № 17

ЦТП с открытым водоразбором и установленным регулятором температуры на систему горячего водоснабжения.

А.2.18. Схема № 18

ЦТП с последовательным подключением подогревателя ГВС и элеваторным смешением.

А.2.19. Схема № 19

ЦТП с последовательным подключением подогревателя ГВС и насосным смешением.

А.2.20. Схема № 20

ЦТП с одноступенчатым последовательным подключением подогревателей ГВС и независимым присоединением СО и СВ.

А.2.21. Схема № 21

ЦТП с насосом смешения на подающем трубопроводе.

А.2.22. Схема № 22

ЦТП с насосом смешения на обратном трубопроводе.

А.2.23. Схема № 23

ЦТП с параллельным подключением подогревателя ГВС и насосом смешения на подающем трубопроводе.

А.2.24. Схема № 24

ЦТП с параллельным подключением подогревателя ГВС и насосом смешения на обратном трубопроводе.

А.2.25. Схема № 25

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и насосом смешения на подающем трубопроводе.

А.2.26. Схема № 26

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и насосом смешения на обратном трубопроводе.

А.2.27. Схема № 27

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и насосом смешения на подающем трубопроводе.

А.2.28. Схема № 28

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и насосом смешения на обратном трубопроводе.

А.2.29. Схема №29

Моделирует работу бака смесителя для открытой схемы ГВС.

Моделируется устройство (бак смеситель), которое смешивает сетевую воду подающего и обратного трубопроводов с водой циркуляционного контура ГВС так, чтобы в подающем трубопроводе контура ГВС температура воды была постоянно равна заданному значению. Ветка сети на систему отопления проходят в этой схеме через узел без изменений. Поскольку данный узел имеет один вход и два выхода (контур ГВС и контур системы отопления), то контур ГВС при изображении сети должен подключаться через вспомогательный участок.

Приложение В. Нормы тепловых потерь

В.1. 1959 года - Нормы проектирования тепловой изоляции для трубопроводов и оборудования электростанций и тепловых сетей. М.: Госстройиздат, 1959

Нормы тепловых потерь (плотность теплового потока) водяными теплопроводами

Таблица В.1. Нормы тепловых потерь изолированными теплопроводами в непроходных каналах и при бесканальной прокладке с расчетной среднегодовой температурой грунта + 5 °C на глубине заложения теплопроводов.

Наружный	Нормы тепловых потерь теплопроводами, ккал/(м*ч)											
диаметр труб, мм	Обратным при средней темпе-ратуре воды = 50 °С	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 52,5 °С	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 65 °C	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 75 °С								
32	20	45	52	58								
57	25	56	65	72								
76	29	64	74	82								
89	31	69	80	88								
108	34	76	88	96								
159	42	94	107	117								
219	51	113	130	142								
273	60	132	150	163								
325	68	149	168	183								
377	76	164	183	202								
426	82	180	203	219								
478	91	198	223	241								
529	101	216	243	261								
630	114	246	277	298								
720	125	272	306	327								
820	141	304	341	364								

Наружный	Нормы тепловых потерь теплопроводами, ккал/(м*ч)										
диаметр труб, мм	иаметр руб, мм Обратным Дву при средней прок темпе-ратуре разн воды = 50 °С негод перат грун 920 155	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 52,5 °С	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 65 °C	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 75 °С							
920	155	333	373	399							
1020	170	366	410	436							
1220	200	429	482	508							
1420	228	488	554	580							

Таблица В.2. Нормы тепловых потерь одним изолированным водяным теплопроводом при надземной прокладке с расчетной среднегодовой температурой наружного воздуха + 5 °C

Наружный	Нормы тепловых потерь теплопроводами, ккал/(м*ч)										
диаметр труб, мм	Разность средн	негодовой темпера	атуры сетевой вод	ы в подающем							
	или обрат	гном трубопровод 	ах и наружного в	оздуха, °С							
	45	70	95	120							
32	15	23	31	38							
49	18	27	36	45							
57	21	30	40	49							
76	25	35	45	55							
82	28	38	50	60							
108	31	43	55	67							
133	35	48	60	74							
159	38	50	65	80							
194	42	58	73	88							
219	46	60	78	95							
273	53	70	87	107							
325	60	80	100	120							
377	71	93	114	135							
426	82	105	128	150							
478	89	113	136	160							
429	95	120	145	170							
630	104	133	160	190							
720	115	145	176	206							
820	135	168	200	233							
920	155	190	225	260							
1020	180	220	255	292							
1420	230	280	325	380							

В.2. 1988 года - СНиП 2.04.14-88* Тепловая изоляция оборудования и трубопроводов

Таблица В.3. Норма плотности теплового потока при расположении трубопроводов на открытом воздухе и числе часов работы в год более 5000 (СНиП 2.04.14-88 «Тепловая изоляция трубопроводов и оборудования»)

			Ср	едняя т	темпера	тура то	еплоно	сителя	°C		
	20	50	100	150	200	250	300	350	400	450	500
Условный]	Норма	плотно	сти теп	лового	потока	l		
проход трубопровода, мм	ККАЛ/(ч *М)	KKaJ/(H*M)	KKaJ/(H*M)	ККАЛ/(ч *М)	KKaJ/(H*M)	ККАЛ/(ч *М)	ККАЛ/(Ч*M)	KKaJ/(H*M)	ккал/(ч*м)	ККАЛ/(Ч*M)	ККАЛ/(ч *М)
15	3,44	8,6	17,2	25,8	36,12	47,3	58,48	71,38	85,14	98,9	114,38
20	4,3	9,46	18,92	29,24	40,42	51,6	64,5	78,26	92,88	109,22	126,42
25	4,3	11,18	21,5	31,82	44,72	56,76	70,52	85,14	100,62	117,82	135,88
40	6,02	12,9	24,94	37,84	50,74	66,22	81,7	98,9	116,96	135,88	156,52
50	6,02	14,62	26,66	40,42	55,04	70,52	87,72	105,78	12,04	144,48	165,98
65	7,74	16,34	30,96	46,44	61,92	79,98	98,04	117,82	139,32	160,82	184,04
80	8,6	18,06	33,54	49,88	66,22	85,14	104,92	126,42	147,92	172	196,08
100	9,46	20,64	36,98	55,04	73,1	93,74	115,24	137,6	160,82	185,76	212,42
125	10,32	23,22	42,14	60,2	79,98	104,92	128,14	153,08	178,88	206,4	234,78
150	12,04	25,8	46,44	66,22	87,82	115,24	141,04	166,84	194,36	223,6	254,56
200	15,48	31,82	55,9	79,98	104,92	136,74	166,84	196,08	228,76	262,3	296,7
250	18,06	36,98	64,5	91,16	118,68	153,94	184,9	218,44	252,84	289,82	327,66
300	21,5	42,14	72,24	101,48	133,3	170,28	205,54	240,8	278,64	318,2	359,48
350	24,08	47,3	79,98	112,66	146,2	187,48	224,46	263,16	303,58	346,58	390,44
400	25,8	52,46	87,72	122,12	159,1	202,96	242,52	283,8	326,8	372,38	418,82
450	28,38	55,9	93,74	130,72	169,42	216,72	258,86	301,86	347,44	394,4	443,76
500	30,96	61,06	102,34	142,76	181,46	233,06	276,92	323,36	370,66	422,26	473
600	36,12	70,52	116,96	161,68	206,4	263,16	312,18	362,92	415,38	471,28	528,04
700	41,28	79,12	129,86	179,74	227,04	289,82	343,14	398,18	454,94	515,14	577,92
800	45,58	88,58	143,62	183,18	251,12	319,06	376,68	436,02	497,94	562,44	630,38
900	50,74	97,18	158,24	217,58	274,34	348,3	410,22	473,86	540,08	609,74	681,98
1000	55,9	106,64	172,86	236,5	297,56	376,68	443,76	511,7	582,22	656,18	733,58
Криволиней- ные	16,34	30,1	46,44	60,2	73,1	90,3	103,2	116,1	129	141,9	154,8

	Средняя температура теплоносителя °С												
	20	50	100	150	200	250	300	350	400	450	500		
Условный		-	1	Норма	плотно	сти теп	лового	потока	1				
проход трубопровода, мм	ккал/(ч* м)	ккал/(ч*м)	KKaJI/(H [*] M)	KKaJI/(H [*] M)	(M*H)/ILRXX	ККАЛ/(H*M)	KKaJ/(H [*] M)	KKaJ/(H [*] M)	(M*H)/ILRNN	KKaJ/(H [*] M)	ККАЛ/(н*м)		
поверхно-сти диаметром более 1020 мм и плоские													

Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Таблица В.4. Норма плотности теплового потока при расположении трубопроводов на открытом воздухе и числе часов работы в год 5000 и менее. (СНиП 2.04.14-88 «Тепловая изоляция трубопроводов и оборудования»)

	Средняя температура теплоносителя °С													
	20	50	100	150	200	250	300	350	400	450	500			
Условный]	Норма	плотно	сти теп	лового	потока	1	•				
проход трубопровода, мм	ккал/(ч* м)	ккал/(ч* м)	ккал/(ч* м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч* м)	ккал/(ч* м)	ккал/(ч* м)	ККАЛ/(ч *M)	ккал/(ч* м)	Ккал/(ч*м)			
15	4,3	9,46	18,92	29,24	39,56	50,74	63,64	77,4	91,16	106,64	122,98			
20	5,16	11,18	21,5	32,68	44,72	56,76	70,52	85,14	101,48	118,68	135,88			
25	5,16	12,9	24,08	36,12	49,02	62,78	77,4	170,28	109,22	128,14	147,06			
40	6,88	15,48	28,38	42,14	56,76	73,96	90,3	108,36	128,14	148,78	171,14			
50	7,74	15,48	30,96	45,58	61,06	78,26	97,18	116,1	136,74	158,24	182,32			
65	8,6	19,78	35,26	52,46	69,66	89,44	109,22	130,72	153,08	178,02	203,82			
80	9,46	21,5	38,7	56,76	74,82	96,32	117,82	140,18	164,26	190,06	217,58			
100	11,18	24,08	43	62,78	83,42	105,78	129	153,08	178,88	207,26	236,5			
125	12,9	27,52	48,16	69,66	92,02	119,54	144,48	172	200,38	231,34	263,16			
150	15,48	30,1	54,18	76,54	101,48	131,58	159,1	188,34	220,16	252,84	285,52			
200	18,92	37,84	66,22	93,74	122,12	158,24	190,06	225,32	260,58	297,56	336,26			
250	22,36	43,86	75,68	107,5	138,46	178,02	213,28	251,98	288,96	331,1	373,24			
300	25,8	50,74	86,86	120,4	155,66	198,66	239,08	278,64	321,64	366,36	411,94			
350	30,1	56,76	96,32	133,3	172	219,3	262,3	305,3	351,74	400,76	449,78			

	Средняя температура теплоносителя °С												
	20	50	100	150	200	250	300	350	400	450	500		
Условный]	Норма	плотно	сти теп	лового	потока	l				
проход трубопровода, мм	ккал/(ч*м)	ККАЛ/(ч *M)	ккал/(ч*м)	ккал/(ч [*] м)	ккал/(ч*м)	ккал/(ч* м)	ккал/(ч* м)	ккал/(ч* м)	ккал/(ч* м)	KKall/(H*M)	Ккал/(ч*м)		
400	32,68	62,78	104,92	146,2	186,62	237,36	284,66	331,96	380,12	431,72	484,18		
450	35,26	68,8	113,52	156,52	200,38	256,28	303,58	354,32	405,06	460,1	515,14		
500	38,7	75,68	122,98	169,42	215,86	276,92	325,94	380,12	435,16	492,78	551,26		
600	45,58	86	141,9	193,5	247,68	313,9	371,52	429,14	490,2	553,84	618,34		
700	51,6	98,04	158,24	215	274,34	347,44	408,5	473	538,36	608,02	677,68		
800	57,62	110,08	176,3	239,08	303,58	384,42	452,36	520,3	591,68	666,5	742,18		
900	64,5	121,26	194,36	263,16	333,68	418,82	493,64	567,6	644,14	724,98	805,82		
1000	71,38	133,3	212,42	286,38	362,06	456,66	534,92	614,9	696,6	783,46	869,46		
Криволинейны поверхности диаметром более 1020 мм и плоские	21,5	37,84	61,06	75,68	92,88	114,38	130,72	141,9	163,4	179,74	195,22		

Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Таблица В.5. Норма плотности теплового потока при расположении трубопроводов в помещении и тоннеле и числе часов работы в год более 5000. (СНиП 2.04.14-88 «Тепловая изоляция трубопроводов и оборудования»)

Условный			Средн	яя темі	тератур	а тепл	оносит	еля °С		
проход	50	100	150	200	250	300	350	400	450	500
прусопровода, ММ			Нор	ма пло	тности	теплов	ого пот	ока		
	KKaJI/(H*M)	ккал/(ч*м)	ККАЛ/(H*M)	KKaJI/(H*M)	KKaJI/(H*M)	ККАЛ/(ч *М)	KKaJI/(H*M)	KKaJI/(4*M)	ККАЛ/(ч *М)	ККАЛ/(Ч [*] M)
15	6,88	15,48	24,08	34,4	45,58	56,76	69,66	82,56	98,04	113,52
20	7,74	17,2	27,52	38,7	49,88	62,78	76,54	91,16	107,5	124,7
25	8,6	18,92	30,1	42,14	55,04	67,94	83,42	98,9	116,1	134,16
40	10,32	22,36	35,26	49,02	63,64	79,98	96,32	115,24	134,16	153,94
50	11,18	24,08	37,84	52,46	68,8	85,14	103,2	122,12	142,76	163,4

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 IT. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Условный		Средняя температура теплоносителя °С											
проход	50	100	150	200	250	300	350	400	450	500			
труоопровода, мм		1	Нор	ма пло	гности	теплов	ого пот	ока					
	ККАЛ/(Ч* М)	ккал/(ч* м)	ККАЛ/(Ч* М)	ККАЛ/(ч* М)	ККАЛ/(Ч* М)	ККАЛ/(Ч* М)	ККАЛ/(Ч* М)	ККАЛ/(Ч* М)	ККАЛ/(Ч* М)	ккал/(ч*м)			
65	12,9	27,52	43	59,34	77,4	96,32	115,24	136,74	159,1	181,46			
80	13,76	30,1	46,44	63,64	83,42	102,34	122,98	145,34	169,42	193,5			
100	15,48	33,54	51,6	69,66	90,3	111,8	134,16	158,24	183,18	209,84			
125	18,06	37,84	56,76	77,4	101,48	124,7	150,5	176,3	203,82	232,2			
150	20,64	42,14	62,78	84,28	111,8	137,6	163,4	191,78	221,02	251,12			
200	24,94	50,74	75,68	101,48	133,3	162,54	193,5	224,46	258,86	293,26			
250	29,24	58,48	86	114,38	149,64	181,46	214,14	248,54	286,38	324,22			
300	33,54	66,22	96,32	128,14	165,98	200,38	236,5	274,34	314,76	355,18			
350	37,84	73,1	106,64	141,04	182,32	220,16	258,86	299,28	342,28	386,14			
400	41,28	79,98	116,1	153,08	197,8	237,36	278,64	321,64	368,08	415,38			
450	44,72	86,86	124,7	163,4	210,7	252,84	296,7	342,28	391,3	439,46			
500	49,02	93,74	134,16	176,3	227,04	271,76	318,2	366,36	417,1	467,84			
600	57,62	107,5	153,94	199,52	256,28	306,16	356,9	410,22	466,12	522,88			
700	63,64	119,54	171,14	220,16	282,08	336,26	392,16	448,92	509,12	570,18			
800	72,24	133,3	189,2	243,38	311,32	369,8	429,14	491,06	556,42	624,36			
900	79,98	146,2	207,26	265,74	339,7	402,48	466,98	533,2	603,72	675,96			
1000	87,72	159,96	225,32	288,1	368,08	435,16	503,96	574,48	651,88	726,7			
Криволинейны поверхности диаметром более 1020 мм и плоские	24,94	43	58,48	71,38	89,44	102,34	115,24	128,14	141,9	153,94			

Примечание

F)

- 1. При расположении изолируемых поверхностей в тоннеле к нормам плотности следует вводить коэффициент 0,85;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Таблица В.6. Норма плотности теплового потока при расположении трубопроводов в помещении и тоннеле и числе часов работы в год

Условный	Средняя температура теплоносителя °С											
проход	50	100	150	200	250	300	350	400	450	500		
труоопровода, мм			Нор	ма пло	гности	теплов	ого пот	ока				
	()	()	()	()	<u>.</u>	.	•	(1	(<u> </u>		
	м _* н)/	м _* н)/	м _* н)/	м _* н)/	w*₽)/	м _* н)/	w _* н)/	м _* н)/	м _* н)/	_{W*} н)/		
	ккал	ккал	ккал	ККАЛ	ккал	ккал	ккал	ккал	ккал	ККАЛ		
15	7,74	17,2	26,66	37,84	49,02	61,92	74,82	89,44	104,92	121,26		
20	8,6	18,92	30,1	42,14	55,04	68,8	83,42	98,9	116,1	134,16		
25	9,46	21,5	33,54	46,44	60,2	74,82	91,16	107,5	126,42	145,34		
40	11,18	24,94	39,56	55,04	71,38	88,58	106,64	125,56	146,2	167,7		
50	12,9	27,52	42,14	58,48	76,54	94,6	113,52	134,16	156,52	178,88		
65	14,62	31,82	49,02	67,08	86,86	106,64	128,14	151,36	175,44	200,38		
80	17,2	35,26	53,32	72,24	92,88	114,38	137,6	161,68	188,34	214,14		
100	18,92	38,7	59,34	79,98	102,34	125,56	12,9	176,3	203,82	233,06		
125	21,5	43,86	66,22	87,72	116,1	141,9	168,56	196,94	228,76	259,72		
150	24,08	48,16	73,1	98,04	128,14	155,66	184,9	215,86	249,4	282,94		
200	30,96	60,2	88,58	117,82	153,94	185,76	220,16	257,14	294,12	332,82		
250	36,12	69,66	101,48	133,3	172,86	208,12	246,82	285,52	327,66	368,94		
300	41,28	79,12	114,38	149,64	193,5	232,2	274,34	316,48	362,06	407,64		
350	45,58	88,58	126,42	165,98	213,28	257,14	301	347,44	395,6	444,62		
400	51,6	97,18	139,32	180,6	231,34	278,64	325,94	374,96	426,56	479,02		
450	55,04	104,92	148,78	193,5	250,26	298,42	348,3	399,9	454,94	509,98		
500	61,06	113,52	161,68	208,98	270,04	320,78	374,1	429,14	486,76	545,24		
600	69,66	130,72	184,9	238,22	307,02	363,78	423,12	483,32	547,82	612,32		
700	78,26	146,2	205,54	265,74	338,84	401,62	465,26	531,48	601,14	670,8		
800	87,72	163,4	227,9	294,12	374,96	442,9	512,56	583,94	659,62	736,16		
900	98,04	179,74	251,12	322,5	411,08	484,18	559	636,4	718,1	798,94		
1000	107,5	196,94	273,48	350,88	446,34	525,46	605,44	688	776,58	862,58		
Криволинейны поверхности диаметром более 1020 мм и плоские	: 30,96	54,18	73,1	90,3	113,52	129,86	146,2	161,68	179,74	194,36		

5000 и менее. (СНиП 2.04.14-88 «Тепловая изоляция трубопроводов и оборудования»)

Ŧ

Примечание

1. При расположении изолируемых поверхностей в тоннеле к нормам плотности следует вводить коэффициент 0,85;

2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Норма плотности теплового потока через изолированную поверхность трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах.

Таблица В.7. Норма плотности теплового потока при числе часов работы в год 5000 и менее (СНиП 2.04.14-88)

	Трубопровод											
	подаг	ющий	обра	тный	пода	ющий	обра	гный	пода	ющий	обра	гный
Varanuu			Ср	еднегод	овая т	емперат	гура те	плонос	ителя,	°C		
у словныи проход	6	5	5	50	9	0	5	0	1	10	50	
трубопровода, мм	BT/M	ККАЛ/(Ч*M)	BT/M	ккал/(ч*м)	BT/M	ККАЛ/(Ч*M)	BT/M	ККАЛ/(Ч*M)	BT/M	ККАЛ/(Ч*M)	BT/M	ККАЛ/(Ч*M)
25	18	15,48	12	10,32	26	22,36	11	9,46	31	26,66	10	8,6
30	19	16,34	13	11,18	27	23,22	12	10,32	33	28,38	11	9,46
40	21	18,06	14	12,04	29	24,94	13	11,18	36	30,96	12	10,32
50	22	18,92	15	12,9	33	28,38	14	12,04	40	34,4	13	11,18
65	27	23,22	19	16,34	38	32,68	16	13,76	47	40,42	14	12,04
80	29	24,94	20	17,2	41	35,26	17	14,62	51	43,86	15	12,9
100	33	28,38	22	18,92	46	39,56	19	16,34	57	49,02	17	14,62
125	34	29,24	23	19,78	49	42,14	20	17,2	61	52,46	18	15,48
150	38	32,68	26	22,36	54	46,44	22	18,92	65	55,9	19	16,34
200	48	41,28	31	26,66	66	56,76	26	22,36	83	71,38	23	19,78
250	54	46,44	35	30,1	76	65,36	29	24,94	93	79,98	25	21,5
300	62	53,32	40	34,4	87	74,82	32	27,52	103	88,58	28	24,08
350	68	58,48	44	37,84	93	79,98	34	29,24	117	100,62	29	24,94
400	76	65,36	47	40,42	109	93,74	37	31,82	123	105,78	30	25,8
450	77	66,22	49	42,14	112	96,32	39	33,54	135	116,1	32	27,52
500	88	75,68	54	46,44	126	108,36	43	36,98	167	143,62	33	28,38
600	98	84,28	58	49,88	140	120,4	45	38,7	171	147,06	35	30,1
700	107	92,02	63	54,18	163	140,18	47	40,42	185	159,1	38	32,68
800	130	111,8	72	61,92	181	155,66	48	41,28	213	183,18	42	36,12
900	138	118,68	75	64,5	190	163,4	57	49,02	234	201,24	44	37,84
1000	152	130,72	78	67,08	199	171,14	59	50,74	249	214,14	49	42,14
1200	185	159,1	86	73,96	257	221,02	66	56,76	300	258	54	46,44
1400	204	175,44	90	77,4	284	244,24	69	59,34	322	276,92	58	49,88

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65, 90, 110 °C соответствуют температурным графикам 95-70, 150-70, 180-70 °C;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Норма плотности теплового потока через изолированную поверхность трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах.

Таблица В.8. Норма плотности теплового потока при числе часов работы в год более 5000(СНиП 2.04.14-88)

	Трубопровод											
	подан	ощий	обра	тный	подаг	ощий	обра	гный	подан	ощий	обра	гный
Varanu ŭ			Ср	еднегод	цовая т	емпера	гура те	плонос	ителя,	°C		
у словный проход	6	5	5	50	9	0	5	0	1	10	50	
трубопровода, мм	BT/M	ККАЛ/(Ч*M)	BT/M	ккал/(ч*м)	BT/M	ккал/(ч*м)	BT/M	ККАЛ/(Ч*M)	BT/M	ККАЛ/(Ч*M)	BT/M	ККАЛ/(Ч*M)
25	16	13,76	11	9,46	23	19,78	10	8,6	28	24,08	9	7,74
30	17	14,62	12	10,32	24	20,64	11	9,46	30	25,8	10	8,6
40	18	15,48	13	11,18	26	22,36	12	10,32	32	27,52	11	9,46
50	20	17,2	14	12,04	28	24,08	13	11,18	35	30,1	12	10,32
65	23	19,78	16	13,76	34	29,24	15	12,9	40	34,4	13	11,18
80	25	21,5	17	14,62	36	30,96	16	13,76	44	37,84	14	12,04
100	28	24,08	19	16,34	41	35,26	17	14,62	48	41,28	15	12,9
125	31	26,66	21	18,06	42	36,12	18	15,48	50	43	16	13,76
150	32	27,52	22	18,92	44	37,84	19	16,34	55	47,3	17	14,62
200	39	33,54	27	23,22	54	46,44	22	18,92	68	58,48	21	18,06
250	45	38,7	30	25,8	64	55,04	25	21,5	77	66,22	23	19,78
300	50	43	33	28,38	70	60,2	28	24,08	84	72,24	25	21,5
350	55	47,3	37	31,82	75	64,5	30	25,8	94	80,84	26	22,36
400	58	49,88	38	32,68	82	70,52	33	28,38	101	86,86	28	24,08
450	67	57,62	43	36,98	93	79,98	36	30,96	107	92,02	29	24,94
500	68	58,48	44	37,84	98	84,28	38	32,68	117	100,62	32	27,52
600	79	67,94	50	43	109	93,74	41	35,26	132	113,52	34	29,24
700	89	76,54	55	47,3	126	108,36	43	36,98	151	129,86	37	31,82
800	100	86	60	51,6	140	120,4	45	38,7	163	140,18	40	34,4
900	106	91,16	66	56,76	151	129,86	54	46,44	186	159,96	43	36,98
1000	117	100,62	71	61,06	158	135,88	57	49,02	192	165,12	47	40,42

						Трубо	провод					
	пода	ющий	обра	гный	подан	ощий	обра	гный	пода	ющий	обрат	гный
Vozonu i			Ср	еднегод	цовая т	емпера	тура те	плонос	ителя,	°C		
у словныи проход	6	55	5	0	9	0	5	60	1	10	5	0
трубопровода, мм	BT/M	ккал/(ч*м)	Вт/м	ккал/(ч*м)	Вт/м	ккал/(ч*м)	Вт/м	ккал/(ч*м)	BT/M	ккал/(ч*м)	BT/M	ккал/(ч*м)
1200	144	123,84	79	67,94	185	159,1	64	55,04	229	196,94	52	44,72
1400	152	130,72	82	70,52	210	180,6	68	58,48	252	216,72	56	48,16

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65, 90, 110 °C соответствуют температурным графикам 95-70, 150-70, 180-70 °C;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Норма плотности теплового потока через изолированную поверхность трубопроводов при двухтрубной подземной бесканальной прокладке водяных тепловых сетей.

Условный				Трубо	провод			
проход	пода	ющий	обра	тный	пода	ющий	обра	тный
уоопровод мм	,	Сре	еднегодов	ая темпера	тура тепл	оносителя,	°C	
		65	4	50	9	90	5	50
	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)
25	36	30,96	27	23,22	48	41,28	26	22,36
50	44	37,84	34	29,24	60	51,6	32	27,52
65	50	43	38	32,68	67	57,62	36	30,96
80	51	43,86	39	33,54	69	59,34	37	31,82
100	55	47,3	42	36,12	74	63,64	40	34,4
125	61	52,46	46	39,56	81	69,66	44	37,84
150	69	59,34	52	44,72	91	78,26	49	42,14
200	77	66,22	59	50,74	101	86,86	54	46,44
250	83	71,38	63	54,18	111	95,46	59	50,74
300	91	78,26	69	59,34	122	104,92	64	55,04
350	101	86,86	75	64,5	133	114,38	69	59,34
400	108	92,88	80	68,8	140	120,4	73	62,78
450	116	99,76	86	73,96	151	129,86	78	67,08

Таблица В.9. Норма плотности теплового потока при числе часов работы в год 5000 и менее (СНиП 2.04.14-88)

Уc	ловный				Трубо	провод			
П б	проход	пода:	ющий	обра	тный	пода	ющий	обра	тный
r iyu	опровод мм		Сре	еднегодов	ая темпера	тура тепл	оносителя,	°C	
	-	(65	5	50	9	90	5	50
		Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)
	500	123	105,78	91	78,26	163	140,18	83	71,38
	600	140	120,4	103	88,58	186	159,96	94	80,84
	700	156	134,16	112	96,32	203	174,58	100	86
	800	169	145,34	122	104,92	226	194,36	109	93,74

(F)

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65, 90 °C соответствуют температурным графикам 95-70, 150-70 °C;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Норма плотности теплового потока через изолированную поверхность трубопроводов при двухтрубной подземной бесканальной прокладке водяных тепловых сетей.

Таблица В.10.	Норма	плотности	теплового	потока п	ри числе	часов	работы в	
год более 5000	(СНиП	2.04.14-88))					

	Условный				Трубо	провод			
T	проход	пода	ющий	обра	тный	пода	ющий	обра	гный
1	уоопровод мм		Сре	еднегодова	я темпера	тура тепло	оносителя,	°C	
		(55	5	50	9	0	5	0
		Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)
	25	33	28,38	25	21,5	44	37,84	24	20,64
	50	40	34,4	31	26,66	54	46,44	29	24,94
	65	45	38,7	34	29,24	60	51,6	33	28,38
	80	46	39,56	35	30,1	61	52,46	34	29,24
	100	49	42,14	38	32,68	65	55,9	35	30,1
	125	53	45,58	41	35,26	72	61,92	39	33,54
	150	60	51,6	46	39,56	80	68,8	43	36,98
	200	66	56,76	50	43	89	76,54	48	41,28
	250	72	61,92	55	47,3	96	82,56	51	43,86
	300	79	67,94	59	50,74	105	90,3	56	48,16
	350	86	73,96	65	55,9	113	97,18	60	51,6
	400	91	78,26	68	58,48	121	104,06	63	54,18
	450	97	83,42	72	61,92	129	110,94	67	57,62

Условный	Í			Трубо	провод				
проход	пода:	ющий	обра	тный	пода	ющий	обра	тный	
мм (1900) мм],	Сре	еднегодов	ая темпера	тура тепл	оносителя,	°C		
	(65	5	50	9	0	50		
	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	
500	105	90,3	78	67,08	138	118,68	72	61,92	
600	117	100,62	87	74,82	156	134,16	80	68,8	
700	126	108,36	93	79,98	170	146,2	86	73,96	
800	140	120,4	102	87,72	186	159,96	93	79,98	

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65, 90 °C соответствуют температурным графикам 95-70, 150-70 °C;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией;
- 3. При применении в качестве теплоизоляционного слоя пенополиуретана, фенольного поропласта ФЛ, полимербетона значения норм плотности следует определять с учетом коэффициента К2, приведенного в таблице ниже.

Таблица В.11. Коэффициент К2, учитывающий изменение норм плотности теплового потока при применении теплоизоляционного слоя из пенополиуретана, полимербетона, фенольного поропласта ФЛ

	Материал	Услов	ный проход	трубопрово	да, мм
Т	еплоизоляционно	^{го} 25-65	89-150	200-300	350-500
	CIUN		Коэффи	циент К2	
	пенополиуретан, фенольный поропласт	0,5	0,6	0,7	0,8
	полимербетон	0,7	0,8	0,9	1

В.3. 1997 года - Изменения внесенные в СНиП 2.04.14-88* постановлением Госстроя России от 29.12.97 г. № 18-80

Таблица В.12. Норма плотности теплового потока трубопроводов при числе часов работы в год 5000 и менее

						Трубог	тровод					
	Пода	ющий	Обра	тный	Пода	ющий	Обра	тный	Пода	ющий	Обра	тный
Varar			(Среднег	одовая	темпер	атура	геплон	осител	я		
у словныи диаметр	6	5	5	50	9	0	5	6	1	10	5	60
трубопровода, мм	Вт/м	ккал/(м*ч)	Вт/м	ккал/(м*ч)	BT/M	ккал/(M* ч)	BT/M	ккал/(м*ч)	Вт/м	ккал/(м*ч)	Вт/м	ккал/(м*ч)
25	15	12,9	10	8,6	22	18,92	10	8,6	26	22,36	9	7,74
30	16	13,76	11	9,46	23	19,78	11	9,46	28	24,08	10	8,6
40	18	15,48	12	10,32	25	21,5	12	10,32	31	26,66	11	9,46
50	19	16,34	13	11,18	28	24,08	13	11,18	34	29,24	12	10,32
65	23	19,78	16	13,76	32	27,52	14	12,04	40	34,4	13	11,18
80	25	21,5	17	14,62	35	30,1	15	12,9	43	36,98	14	12,04
100	28	24,08	19	16,34	39	33,54	16	13,76	48	41,28	16	13,76
125	29	24,94	20	17,2	42	36,12	17	14,62	52	44,72	17	14,62
150	32	27,52	22	18,92	46	39,56	19	16,34	55	47,3	18	15,48
200	41	35,26	26	22,36	55	47,3	22	18,92	71	61,06	20	17,2
250	46	39,56	30	25,8	65	55,9	25	21,5	79	67,94	21	18,06
300	53	45,58	34	29,24	74	63,64	27	23,22	88	75,68	24	20,64
350	58	49,88	37	31,82	79	67,94	29	24,94	98	84,28	25	21,5
400	65	55,9	40	34,4	87	74,82	32	27,52	105	90,3	26	22,36
450	70	60,2	42	36,12	95	81,7	33	28,38	115	98,9	27	23,22
500	75	64,5	46	39,56	107	92,02	36	30,96	130	111,8	28	24,08
600	83	71,38	49	42,14	119	102,34	38	32,68	145	124,7	30	25,8
700	91	78,26	54	46,44	139	119,54	41	35,26	157	135,02	33	28,38
800	106	91,16	61	52,46	150	129	45	38,7	181	155,66	36	30,96
900	117	100,62	64	55,04	162	139,32	48	41,28	199	171,14	37	31,82
1000	129	110,94	66	56,76	169	145,34	51	43,86	212	182,32	42	36,12
1200	157	135,02	73	62,78	210	180,6	55	47,3	255	219,3	46	39,56
1400	173	148,78	77	66,22	241	207,26	59	50,74	274	235,64	49	42,14

(F

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65; 90; 110 °C соответствуют температурным графикам 95-70 C; 150-70; 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.13. Норма плотности теплового потока трубопроводов при числе часов работы в год более 5000

Условный						Трубог	гровод					
диаметр трубопроводо	Пода	ющий	Обра	тный	Пода	ющий	Обра	тный	Пода	ющий	Обра	тный
прубопровода, мм			(Среднег	одовая	темпер	атура	геплон	осител	я		
	6	5	5	50	9	0	5	0	1	10	5	0
	BT/M	ККАЛ/(M*ч)	BT/M	ккал/(м*ч)	Вт/м	ККАЛ/(M*ч)	BT/M	ККАЛ/(M*ч)	BT/M	ККАЛ/(M*ч)	BT/M	ККАЛ/(M*ч)
25	14	12,04	9	7,74	20	17,2	9	7,74	24	20,64	8	6,88
30	15	12,9	10	8,6	20	17,2	10	8,6	26	22,36	9	7,74
40	16	13,76	11	9,46	22	18,92	11	9,46	27	23,22	10	8,6
50	17	14,62	12	10,32	24	20,64	12	10,32	30	25,8	11	9,46
65	20	17,2	13	11,18	29	24,94	13	11,18	34	29,24	12	10,32
80	21	18,06	14	12,04	31	26,66	14	12,04	37	31,82	13	11,18
100	24	20,64	16	13,76	35	30,1	15	12,9	41	35,26	14	12,04
125	26	22,36	18	15,48	38	32,68	16	13,76	43	36,98	15	12,9
150	27	23,22	19	16,34	42	36,12	17	14,62	47	40,42	16	13,76
200	33	28,38	23	19,78	49	42,14	19	16,34	58	49,88	18	15,48
250	38	32,68	26	22,36	54	46,44	21	18,06	66	56,76	20	17,2
300	43	36,98	28	24,08	60	51,6	24	20,64	71	61,06	21	18,06
350	46	39,56	31	26,66	64	55,04	26	22,36	80	68,8	22	18,92
400	50	43	33	28,38	70	60,2	28	24,08	86	73,96	24	20,64
450	54	46,44	36	30,96	79	67,94	31	26,66	91	78,26	25	21,5
500	58	49,88	37	31,82	84	72,24	32	27,52	100	86	27	23,22
600	67	57,62	42	36,12	93	79,98	35	30,1	112	96,32	31	26,66
700	76	65,36	47	40,42	107	92,02	37	31,82	128	110,08	31	26,66
800	85	73,1	51	43,86	119	102,34	38	32,68	139	119,54	34	29,24
900	90	77,4	56	48,16	128	110,08	43	36,98	150	129	37	31,82
1000	100	86	60	51,6	140	120,4	46	39,56	163	140,18	40	34,4
1200	114	98,04	67	57,62	158	135,88	53	45,58	190	163,4	44	37,84

Условный						Трубог	тровод					
диаметр трубочровоно	Подаг	ющий	Обра	тный	Пода	ощий	Обра	тный	Пода	ющий	Обра	тный
прубопровода, мм			C	Среднег	одовая	темпер	атура	геплон	осителя	Я		
	6	5	5	0	9	0	50		110		50	
	BT/M	ККАЛ/(M*ч)	BT/M	ккал/(м*ч)	BT/M	ККАЛ/(M*ч)	BT/M	ККАЛ/(М*ч)	BT/M	ККАЛ/(М*ч)	BT/M	ККАЛ/(М*ч)
1400	130	111,8	70	60,2	179	153,94	58	49,88	224	192,64	48	41,28

Ŧ

Примечание

- Расчетные среднегодовые температуры воды в водяных тепловых сетях 65; 90; 110 °C соответствуют температурным графикам 95-70 C; 150-70; 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.14. Нормы плотности теплового потока при расположении оборудования и трубопроводов на открытом воздухе и числом работы в год более 5000 ч.

				Сре	дняя	темпе	ратур	а тепл	юносі	ителя,	°C			
V алории ий	2	20	5	50	1	00	1	50	20	00	2	50	3	00
у словный проход трубопровода, мм	BT/M	ккал/(м*ч)	Вт/м	Ккал/(м*ч)	Вт/м	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)
15	3	2,58	8	6,88	16	13,76	24	20,64	34	29,24	45	38,7	55	47,3
20	4	3,44	9	7,74	18	15,48	28	24,08	38	32,68	49	42,14	61	52,46
25	4	3,44	11	9,46	20	17,2	30	25,8	42	36,12	54	46,44	66	56,76
40	5	4,3	12	10,32	24	20,64	36	30,96	48	41,28	62	53,32	77	66,22
50	6	5,16	14	12,04	25	21,5	38	32,68	52	44,72	66	56,76	83	71,38
65	7	6,02	15	12,9	29	24,94	44	37,84	58	49,88	75	64,5	92	79,12
80	8	6,88	17	14,62	32	27,52	47	40,42	62	53,32	80	68,8	99	85,14
100	9	7,74	19	16,34	35	30,1	52	44,72	69	59,34	88	75,68	109	93,74
125	10	8,6	22	18,92	40	34,4	57	49,02	75	64,5	99	85,14	121	
150	11	9,46	24	20,64	44	37,84	62	53,32	83	71,38	109	93,74	133	114,38
200	15	12,9	30	25,8	53	45,58	75	64,5	99	85,14	129	110,94	157	
250	17	14,62	35	30,1	61	52,46	86	73,96	112	96,32	145	124,7	174	
300	20	17,2	40	34,4	68	58,48	96	82,56	126		160	137,6	194	

				Сре	дняя	темпе	ратур	а тепл	юносі	ителя,	°C			
Varanuuŭ	2	0	5	50	1	00	1:	50	20	00	2	50	3	00
у словный проход трубопровода, мм	BT/M	ккал/(м*ч)	BT/M	Ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)
350	23	19,78	45	38,7	75	64,5	106	91,16	138	118,68	177	152,22	211	
400	24	20,64	49	42,14	83	71,38	115	98,9	150	129	191	164,26	228	
450	27	23,22	53	45,58	88	75,68	123	105,78	160	137,6	204	175,44	244	
500	29	24,94	58	49,88	96	82,56	135	116,1	171		220	189,2	261	
600	34	29,24	66	56,76	110	94,6	152	130,72	194		248	213,28	294	
700	39	33,54	75	64,5	122		169	145,34	214		273	234,78	323	
800	43	36,98	83	71,38	135	116,1	172	147,92	237		301	258,86	355	305,3
900	48	41,28	92	79,12	149		205	176,3	258		328	282,08	386	-
1000	53	45,58	101	86,86	163		223	191,78	280	240,8	355	305,3	418	-
Криволинейны поверхности более 1022 мм и плоские	e 5	4,3	28	24,08	44	37,84	57	49,02	69	59,34	85	73,1	97	83,42

Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.15. Норма плотности теплового потока при расположении оборудования и трубопроводов на открытом воздухе и числе часов работы в год 5000 ч и менее

	Средняя температура теплоносителя, °С														
Условный проход трубопровода, мм	20		5	50		100		150		200		250		300	
	BT/M	ккал/(м*ч)	BT/M	Ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	
15	4	3,44	9	7,74	18	15,48	28	24,08	38	32,68	48	41,28	61	52,46	
20	5	4,3	11	9,46	21	18,06	31	26,66	43	36,98	54	46,44	67	57,62	
25	5	4,3	12	10,32	23	19,78	34	29,24	47	40,42	60	51,6	74	63,64	
40	7	6,02	15	12,9	27	23,22	40	34,4	54	46,44	71	61,06	86	73,96	
50	7	6,02	16	13,76	30	25,8	44	37,84	58	49,88	75	64,5	93	79,98	
65	8	6,88	19	16,34	34	29,24	50	43	67	57,62	85	73,1	104	89,44	
80	9	7,74	21	18,06	37	31,82	54	46,44	71	61,06	92	79,12	112	96,32	

	Средняя температура теплоносителя, °С													
Условный проход трубопровода, мм	2	0	5	50	1	00	1	50	200		250		300	
	BT/M	ккал/(м*ч)	BT/M	Ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ККАЛ/(M*ч)	BT/M	ккал/(M*ч)	BT/M	ККАЛ/(M*ч)
100	11	9,46	23	19,78	41	35,26	60	51,6	80	68,8	101	86,86	123	
125	12	10,32	26	22,36	46	39,56	66	56,76	88	75,68	114	98,04	138	118,68
150	15	12,9	29	24,94	52	44,72	73	62,78	97	83,42	126	108,36	152	
200	18	15,48	36	30,96	63	54,18	89	76,54	117		151	129,86	181	
250	21	18,06	40	34,4	72	61,92	103	88,58	132	113,52	170	146,2	203	
300	25	21,5	48	41,28	83	71,38	115	98,9	149		189	162,54	228	
350	29	24,94	54	46,44	92	79,12	127	109,22	164		209	179,74	250	215
400	31	26,66	60	51,6	100	86	139	119,54	178		226	194,36	271	
450	34	29,24	66	56,76	108	92,88	149	128,14	191		244	209,84	290	249,4
500	37	31,82	72	61,92	117		162	139,32	206		264	227,04	311	
600	44	37,84	82	70,52	135	116,1	185	159,1	236		299	257,14	354	
700	49	42,14	94	80,84	151		205	176,3	262		331	284,66	390	335,4
800	55	47,3	105	90,3	168		228	196,08	290	249,4	367	315,62	431	
900	62	53,32	116	99,76	185	159,1	251	215,86	318		399	343,14	471	
1000	68	58,48	127		203		273	234,78	345	296,7	435	374,1	510	438,6
Криволинейны поверхности более 1022 мм и плоские	21	18,06	36	30,96	58	49,88	72	61,92	89	76,54	109	93,74	125	107,5

(F)

Примечание - Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.16. Норма плотности теплового потока при расположении оборудования и трубопроводов в помещении и числе работы в год более 5000 ч

	Средняя температура теплоносителя, °С												
V	50		100		150		200		250		300		
Условный проход трубопровода, мм	BT/M	KKaJJ/(M*4)	BT/M	KKaJJ/(M*4)	BT/M	ккал/(м*ч)	BT/M	ККАЛ/(M* ч)	BT/M	ККАЛ/(M*ч)	BT/M	ккал/(м*ч)	
15	6	5,16	14	12,04	22	18,92	32	27,52	42	36,12	53	45,58	

	Средняя температура теплоносителя, °С												
Vaganusu	50		100		1	50	2	00	250		3	00	
лроход трубопровода , мм	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	
20	7	6,02	16	13,76	26	22,36	36	30,96	46	39,56	58	49,88	
25	8	6,88	19	16,34	28	24,08	39	33,54	51	43,86	63	54,18	
40	10	8,6	21	18,06	33	28,38	46	39,56	59	50,74	74	63,64	
50	10	8,6	22	18,92	35	30,1	49	42,14	64	55,04	79	67,94	
65	12	10,32	26	22,36	40	34,4	55	47,3	72	61,92	90	77,4	
80	13	11,18	28	24,08	43	36,98	59	50,74	7	6,02	95	81,7	
100	14	12,04	31	26,66	48	41,28	65	55,9	84	72,24	104	89,44	
125	17	14,62	35	30,1	53	45,58	72	61,92	94	80,84	116	99,76	
150	19	16,34	39	33,54	58	49,88	78	67,08	104	89,44	128	110,08	
200	23	19,78	47	40,42	70	60,2	94	80,84	124		151	129,86	
250	27	23,22	54	46,44	80	68,8	106	91,16	139	119,54	169	145,34	
300	31	26,66	62	53,32	90	77,4	119	102,34	154		186	159,96	
350	35	30,1	68	58,48	99	85,14	131	112,66	170	146,2	205	176,3	
400	38	32,68	74	63,64	108	92,88	142	122,12	184		221	190,06	
450	42	36,12	81	69,66	116	99,76	152	130,72	196		235	202,1	
500	46	39,56	87	74,82	125	107,5	164	141,04	211		253	217,58	
600	54	46,44	100	86	143		186	159,96	238		285	245,1	
700	59	50,74	111	95,46	159		205	176,3	262		313	269,18	
800	67	57,62	124		176		226	194,36	290	249,4	344	295,84	
900	74	63,64	136	116,96	193		247	212,42	316		374	321,64	
1000	82	70,52	149		210	180,6	286	245,96	342		405	348,3	
Криволинейны поверхности более 1022 мм и плоские	23	19,78	40	34,4	54	46,44	66	56,76	83	71,39	95	81,7	

(F)

- 1. Примечание: 1. При расположении изолируемых поверхностей в тоннелях к нормам плотности следует вводить коэффициент 0,85;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.17. Норма плотности теплового потока при расположении оборудования и трубопроводов в помещении и тоннеле и числе часов работы в год 5000 ч и менее

	Средняя температура теплоносителя, °С													
Varanuu	50		100		1	50	2	00	250		3	00		
у словный проход трубопровода, мм	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)		
15	7	6,02	16	13,76	25	21,5	35	30,1	46	39,56	58	49,88		
20	8	6,88	18	15,48	28	24,08	39	33,54	51	43,86	64	55,04		
25	9	7,74	20	17,2	31	26,66	43	36,98	56	48,16	70	60,2		
40	10	8,6	23	19,78	37	31,82	51	43,86	66	56,76	82	70,52		
50	12	10,32	26	22,36	39	33,54	54	46,44	71	61,06	88	75,68		
65	14	12,04	30	25,8	46	39,56	62	53,32	81	69,66	99	85,14		
80	16	13,76	33	28,38	50	43	67	57,62	86	73,96	106	91,16		
100	18	15,48	36	30,96	55	47,3	74	63,64	95	81,7	117	100,62		
125	20	17,2	41	35,26	62	53,32	82	70,52	108	92,88	132	113,52		
150	22	18,92	45	38,7	68	58,48	91	78,26	119		145	124,7		
200	29	24,94	56	48,16	82	70,52	110	94,6	143		173	148,78		
250	34	29,24	65	55,9	94	80,84	124	106,64	161		194	166,84		
300	38	32,68	74	63,64	106	91,16	139	119,54	180	154,8	216	185,76		
350	42	36,12	82	70,52	118		154	132,44	198		239	205,54		
400	48	41,28	90	77,4	130	111,8	168	144,48	215	184,9	259	222,74		
450	51	43,86	98	84,28	138	118,68	180	154,8	233		278	239,08		
500	57	49,02	106	91,16	150	129	194	166,84	251		298	256,28		
600	65	55,9	122		172		222	190,92	286		338	290,68		
700	73	62,78	136	116,96	191		247	212,42	315	270,9	374	321,64		
800	82	70,52	152		212		274	235,64	349		412	354,32		
900	91	78,26	167		234		300	258	382		450	387		
1000	100	86	183		254	-	326	280,36	415	356,9	489	420,54		
Криволинейны поверхности более 1022 мм и плоские	29	24,96	50	43	68	58,48	84	72,24	106	91,16	121	104,06		

Примечание

1. При расположении изолируемых поверхностей в тоннелях к нормам плотности следует вводить коэффициент 0,85;
2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

В.4. 2003 года - СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов

Таблица В.18. Нормы плотности теплового потока оборудования и трубопроводов с положительными температурами при расположении на открытом воздухе и числе часов работы более 5000

Условный				Т	емпер	атура	тепло	носит	селя, ^о	С			
проход	20	50	100	150	200	250	300	350	400	450	500	550	600
грусопровод мм		1		Пло	тност	гь теп.	тового) пото	ка, Вт	/м2			
15	4	9	17	25	35	45	56	68	81	94	109	124	140
20	4	10	19	28	39	50	62	75	89	103	119	135	152
25	5	11	20	31	42	54	67	81	95	111	128	145	163
40	5	12	23	35	47	60	75	90	106	123	142	161	181
50	5	14	26	38	51	66	81	98	115	133	153	173	195
65	7	16	29	43	58	74	90	108	127	147	169	191	214
80	8	17	31	46	62	78	96	115	135	156	179	202	226
100	9	19	34	50	67	85	104	124	146	168	192	217	243
125	10	21	38	55	74	93	114	136	159	183	208	235	263
150	11	23	42	61	80	101	132	156	182	209	238	267	298
200	14	28	50	72	95	119	154	182	212	242	274	308	343
250	16	33	57	82	107	133	173	204	236	270	305	342	380
300	18	39	67	95	124	153	191	224	259	296	333	373	414
350	22	45	77	108	140	173	208	244	281	320	361	403	446
400	25	49	84	117	152	187	223	262	301	343	385	430	476
450	27	54	91	127	163	200	239	280	322	365	410	457	505
500	30	58	98	136	175	215	256	299	343	389	436	486	537
600	34	67	112	154	197	241	286	333	382	432	484	537	593
700	38	75	124	170	217	264	313	364	416	470	526	583	642
800	43	83	137	188	238	290	343	397	453	511	571	633	696
900	47	91	150	205	259	315	372	430	490	552	616	681	749
1000	52	100	163	222	281	340	400	463	527	592	660	729	801
1400	70	133	215	291	364	439	514	591	670	750	833	918	1098

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 IT. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Условный				Т	емпер	атура	тепло	носит	еля, °	С			
проход	20 a.	50	50 100 150 200 250 300 350 400 450 500 550 600										
прусопровод мм	-,			Пло	отност	ть тепл	ювого) ПОТО	ка, Вт	/м2			
Более 1400		Плотность теплового потока, Вт/м2											
и плоские поверхности	15	27	41	54	66	77	89	100	110	134	153	174	192

Примечание

(F)

1. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.19. Нормы плотности теплового потока оборудования и трубопроводов с положительными температурами при расположении на открытом воздухе и числе часов работы 5000 и менее

Условный				Т	емпер	атура	тепло	носит	еля, °	С			
проход	20	50	100	150	200	250	300	350	400	450	500	550	600
грусопровод мм				Пло	отност	ъ теп.	ювого) ПОТО	ка, Вт	/м2			
15	4	10	18	28	28	40	61	74	97	102	117	122	150
15	4	10	10	20	30	49	01	74	07	102	117	135	150
20	5	11	21	31	42	54	6/	81	96	112	128	146	164
25	5	12	23	34	46	59	73	88	104	120	138	157	176
40	6	14	26	39	52	67	82	99	116	135	154	174	196
50	7	16	29	43	57	73	90	107	126	146	167	189	212
65	8	18	33	48	65	82	100	120	141	162	185	209	234
80	9	20	36	52	69	88	107	128	150	172	197	222	248
100	10	22	39	57	76	96	116	139	162	187	212	239	267
125	12	25	44	63	84	113	137	162	189	216	245	276	307
150	13	27	48	70	92	123	149	176	205	235	266	298	332
200	16	34	59	83	109	146	176	207	240	274	310	347	385
250	19	39	67	95	124	166	199	234	270	307	346	387	429
300	22	44	76	106	138	184	220	258	297	338	380	424	469
350	27	54	92	128	164	202	241	282	324	368	413	460	508
400	30	60	100	139	178	219	260	304	349	395	443	493	544
450	33	65	109	150	192	235	280	326	373	422	473	526	580
500	36	71	118	162	207	253	300	349	399	451	505	561	618
600	42	82	135	185	235	285	338	391	447	504	563	624	686
700	47	91	150	204	259	314	371	429	489	551	614	679	746
800	53	102	166	226	286	346	407	470	535	602	670	740	812
900	59	112	183	248	312	377	443	511	581	652	725	800	877
1000	64	123	199	269	339	408	479	552	626	702	780	860	941
1400	87	165	264	355	444	532	621	712	804	898	995	1092	1193

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГТ. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Условный		Температура теплоносителя, °С											
проход	. 20 a.	50	100	150	200	250	300	350	400	450	500	550	600
прусопровод мм	-,	Плотность теплового потока, Вт/м2											
Более 1400		Плотность теплового потока, Вт/м2											
и плоские поверхности	19	35	54	70	85	99	112	125	141	158	174	191	205

Примечание

(F

Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.20. Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы более 5000

Условный				Темі	терату	ра те	ілоно	сителя	я, °С			
проход грубонрород	50 a.	100	150	200	250	300	350	400	450	500	550	600
грусопровод ММ]	Ілотн	ость т	еплов	ого по	отока,	Вт/м2			
15	6	14	23	33	43	54	66	79	93	107	122	138
20	7	16	26	37	48	60	73	87	102	117	134	151
25	8	18	28	40	52	65	79	94	110	126	144	162
40	9	21	32	45	59	73	89	105	122	141	160	180
50	10	23	36	50	64	80	96	114	133	152	173	194
65	12	26	41	56	72	89	107	127	147	169	191	214
80	13	28	44	60	77	95	114	135	156	179	202	227
100	14	31	48	65	84	103	124	146	169	193	218	244
125	16	35	53	72	92	113	136	159	184	210	237	265
150	18	38	58	79	100	123	147	172	199	226	255	285
200	22	46	70	93	118	144	172	200	230	262	294	328
250	26	53	79	106	134	162	193	224	257	291	327	364
300	29	60	88	118	148	179	212	246	281	318	357	396
350	33	66	97	129	161	195	230	267	305	344	385	428
400	36	72	106	139	174	210	247	286	326	368	411	456
450	39	76	114	150	187	225	264	305	348	392	437	484
500	43	84	123	161	200	241	282	326	370	417	465	514
600	49	96	139	181	225	269	315	363	412	462	515	569
700	55	107	153	200	247	295	344	395	448	502	558	616
800	61	118	169	220	270	322	376	431	487	546	606	668
900	67	130	185	239	294	350	407	466	527	589	653	718
1000	74	141	201	259	318	377	438	501	565	631	699	768
1400	99	187	263	337	411	485	561	638	716	797	880	964

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Условный		Температура теплоносителя, °С										
проход трубопровол	, 50 a,	100	150	200	250	300	350	400	450	500	550	600
прусопровод ММ]	Плотн	ость т	еплов	ого пс	отока,	Вт/м2			
Более 1400		Плотность теплового потока, Вт/м2										
и плоские поверхности	23	41	56	69	82	94	106	118	130	141	153	165

Примечание

(F)

Примечание - Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.21. Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы 5000 и менее

Условный				Темі	перату	ра те	ілоно	сителя	я, °С			
проход	50	100	150	200	250	300	350	400	450	500	550	600
груоопровод мм]	Ілотн	ость т	еплов	ого по	тока,	Вт/м2			
15	6	16	25	35	46	58	71	85	99	114	130	147
20	7	18	23	40	52	65	79	93	109	126	143	161
25	8	20	31	43	56	70	85	101	118	136	154	174
40	10	23	36	49	64	80	96	114	132	150	172	194
50	11	25	40	54	70	87	105	124	144	165	187	210
65	13	29	45	62	79	98	118	139	161	184	208	233
80	14	32	49	66	85	105	126	148	171	195	221	247
100	16	35	54	73	93	115	137	161	186	212	239	267
125	18	39	60	81	103	126	151	176	203	231	261	291
150	21	44	66	89	113	138	164	192	221	251	282	315
200	26	53	80	107	134	163	194	225	258	292	328	365
250	30	62	92	122	153	185	218	253	290	327	366	407
300	34	70	103	136	170	205	241	279	319	359	402	446
350	38	77	113	149	186	224	263	304	347	391	436	483
400	42	85	123	162	201	242	284	328	373	419	467	517
450	46	92	134	175	217	260	305	351	398	448	498	551
500	51	100	144	189	233	279	327	375	426	478	532	587
600	58	114	164	214	263	314	367	420	476	533	592	652
700	65	127	182	236	290	345	402	460	520	582	645	710
800	73	141	202	261	320	379	441	504	568	635	703	772
900	81	156	221	285	349	413	479	547	616	687	760	834
1000	89	170	241	309	378	447	518	590	663	739	816	896
1400	120	226	318	406	492	580	668	758	850	943	1038	1136

Условный				Темі	терату	ра тег	ілоно	сителя	я, °С			
проход трубопровол	, 50 a,	100	150	200	250	300	350	400	450	500	550	600
прусопровод мм]	Ілотн	ость т	еплов	ого по	тока,	Вт/м2			
Более 1400		Плотность теплового потока, Вт/м2										
и плоские поверхности	26	48	63	78	92	105	119	132	145	158	171	190

(F

Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.22. Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной канальной прокладке и продолжительности работы в год более 5000 ч

Условный проход трубопровода, мм	Сред теплоносит	негодовая темпера теля (подающий/об	атура ратный), °С
	65/50	90/50	110/50
	Сумма те	рная линейная пло плового потока, Вт	отность г/м
25	19	24	28
32	21	26	30
40	22	28	32
50	25	30	35
65	29	35	40
80	31	37	43
100	34	40	46
125	39	46	52
150	42	50	57
200	52	61	70
250	60	71	80
300	67	79	90
350	75	88	99
400	81	96	108
450	89	104	117
500	96	113	127
600	111	129	145
700	123	144	160
800	137	160	177
900	151	176	197
1000	166	192	212

Условный проход трубопровода, мм	Сред теплоносит	негодовая темпера еля (подающий/об	атура ратный), °С
	65/50	90/50	110/50
	Сумма те	рная линейная пло плового потока, В	отность г/м
1200	195	225	250
1400	221	256	283

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65/50, 90/50 и 110/50 °C соответствуют температурным графикам 95-70, 150-70 и 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.23. Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной канальной прокладке и продолжительности работы в год 5000 ч и менее

)Д Эродо	65/50	90/50	110/50
вода,	Суммарная лі	инейная плотность тепловог	о потока, Вт/м
25	21	26	31
32	24	29	33
40	25	31	35
50	29	34	39
65	32	39	45
80	35	42	48
100	39	47	53
125	44	53	60
150	49	59	66
200	60	71	81
250	71	83	94
300	81	94	105
350	89	105	118
400	98	115	128
450	107	125	140
500	118	137	152
600	134	156	174
700	151	175	194

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

овный Среднегодовая температура теплоносителя (подающий/обратный), °С									
роход	65/50	90/50	110/50						
800	Суммарная ли	нейная плотность теплово	ого потока, Вт/м						
900	186	216	239						
1000	203	234	261						
1200	239	277	305						
14	273	316	349						

Таблица В.24. Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной бесканальной прокладке и продолжительности работы в год более 5000 ч

Условный проход трубопровода, мм	Сре теплоноси	днегодовая темпера теля (подающий/об	атура ратный), °С
	65/50	90/50	110/50
	Сумма	арная линейная пло	отность
	T	еплового потока, В	г/м
25	27	32	36
32	29	35	39
40	31	37	42
50	35	41	47
65	41	49	54
80	45	52	59
100	49	58	66
125	56	66	73
150	63	73	82
200	77	93	100
250	92	106	117
300	105	121	133
350	118	135	148
400	130	148	163
450	142	162	177

Условный проход трубопровода, мм	Среднегодовая температура теплоносителя (подающий/обратный), °С							
	65/50	90/50	110/50					
	Суммарная линейная плотность теплового потока, Вт/м							
500	156	176	194					
600	179	205	223					
700	201	229	249					
800	226	257	279					
900	250	284	308					
1000	275	312	338					
1200	326	368	398					
1400	376	425	461					

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65/50, 90/50 и 110/50 °C соответствуют температурным графикам 95-70, 150-70 и 180-70 °С;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица **B.25**. Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземном бесканальной прокладке и продолжительности работы в год 5000 ч и менее

Условный проход трубопровода, мм	Сред теплоносит	негодовая темпера еля (подающий/об	атура ратный), °С
	65/50	90/50	110/50
	Суммај те	оная линейная пло плового потока, Вт	отность г/м
25	30	35	40
32	32	38	43
40	35	41	47
50	40	47	53
65	46	55	60
80	51	60	66
100	57	67	74
125	65	76	84
150	74	86	94
200	93	107	117
250	110	125	138

Условный проход трубопровода, мм	Среднегодовая температура теплоносителя (подающий/обратный), °С							
	65/50	90/50	110/50					
	Сумма	арная линейная пл еплового потока, В	отность т/м					
300	126	144	157					
350	140	162	177					
400	156	177	194					
450	172	196	213					
500	189	214	232					
600	219	249	269					
700	247	290	302					
800	278	312	341					
900	310	349	380					
1000	341	391	414					
1200	401	454	481					
1400	467	523	567					

(F)

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65/50, 90/50 и 110/50 °C соответствуют температурным графикам 95-70, 150-70 и 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

В.5. Украинские нормы от 1994 года КТМ 204

НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ С ПОЛОЖИТЕЛЬНЫМИ ТЕМПЕРАТУРАМИ

Таблица В.26. Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы более 5000

Условный проход	Ср	Средняя температура теплоносителя, °С								
трубопровода, мм	20	50	100	150	200	250	300	350		
		Ho	рмы л	иней	ной пл	относ	сти			
	теплового потока, Вт/м									
15	4	10	20	30	42	55	68	83		
20	5	11	22	34	47	60	75	91		
25	5	13	25	37	52	66	82	99		

Условный проход	Ср	едняя	темпе	ратур	а тепл	юноси	ителя,	°C
трубопровода, мм	20	50	100	150	200	250	300	350
		Ho	рмы л	иней	ной пл	относ	сти	
			тепло	вого п	отока	, Вт/м		
40	7	15	29	44	59	77	95	115
50	7	17	31	47	64	82	102	123
65	9	19	36	54	72	93	114	137
80	10	21	39	58	77	99	122	147
100	11	24	43	64	85	109	134	160
125	12	27	49	70	93	122	149	178
150	14	30	54	77	102	134	164	194
200	18	37	65	93	122	159	194	228
250	21	43	75	106	138	179	215	254
300	25	49	84	118	155	198	239	280
350	28	55	93	131	170	218	261	306
400	30	61	102	142	185	236	282	330
450	33	65	109	152	197	252	301	351
500	36	71	119	166	211	271	322	376
600	42	82	136	188	240	306	363	422
700	48	92	151	209	264	337	399	463
800	53	103	167	213	292	371	438	507
900	59	113	184	253	319	405	477	551
1000	65	124	201	275	346	438	516	595
Криволинейные поверхности		Норм	мы пое теплоі	ерхно зого по	стной этока,	плотн Вт/м2	ости	
диаметром более 1020 мм и плоские	19	35	54	70	85	105	120	135

(F)

Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.27. Нормы плотности теплового потока при расположении на открытом воздухе и продолжительности часов работы в год 5000 та менее

Условный проход	Ср	Средняя температура теплоносителя, °С								
трубопровода, мм	20	50	100	150	200	250	300	350		
		Ho	рмы л	иней	ной пл	относ	ти			
	теплового потока, Вт/м									
15	5	11	22	34	46	59	74	90		
20	6	13	25	38	52	66	82	99		
25	6	15	28	42	57	73	90	108		

Условный проход	Ср	едняя	темпе	ратур	а тепј	юноси	ателя,	°C
трубопровода, мм	20	50	100	150	200	250	300	350
		Ho	рмы л	иней	ной пл	относ	ти	
			тепло	вого п	отока	, Вт/м		
40	8	18	33	49	66	86	105	126
50	9	19	36	53	71	91	113	135
65	10	23	41	61	81	104	127	152
80	11	25	45	66	87	112	137	163
100	13	28	50	73	97	123	150	178
125	15	32	56	81	107	139	168	200
150	18	35	63	89	118	153	185	219
200	22	44	77	109	142	184	221	262
250	26	51	88	125	161	207	248	293
300	30	59	101	140	181	231	278	324
350	35	66	112	155	200	255	305	355
400	38	73	122	170	217	276	331	386
450	41	80	132	182	233	298	353	412
500	45	88	143	197	251	322	379	442
600	53	100	165	225	288	365	432	499
700	60	114	184	250	319	404	475	550
800	67	128	205	278	353	448	526	605
900	75	141	226	306	388	487	574	660
1000	83	155	247	333	421	531	822	715
Криволинейные поверхности		Норм	иы пов теплоі	ерхно зого по	стной этока,	плотн Вт/м2	ости	
диаметром более 1020 мм и плоские	20	44	71	88	108	133	152	165

Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.28. Нормы плотности теплового потока при расположении в помещении и тоннеле и продолжительности часов работы в год более 5000

Условный проход трубопровода, мм	Средняя температура теплоносителя, °С								
	50	100	150	200	250	300	350		
	Нормы линейной плотности теплового потока, Вт/м								
15	8	18	28	40	53	66	81		
20	9	20	32	45	58	73	89		

Условный проход трубопровода, мм		Cp	оедняя геплон	і темп юсите	ерату еля, °С	pa C	
	50	100	150	200	250	300	350
		Норм	ылин	ейной	плот	ности	
		теп	ловог	о пото	ока, B	г/м	-
25	10	22	35	49	64	79	97
40	12	26	41	57	74	93	112
50	13	28	44	61	80	99	120
65	15	32	50	69	90	112	134
80	16	35	54	74	97	119	143
100	18	39	60	81	105	130	156
125	21	44	66	91	118	145	175
150	24	49	73	98	130	160	190
200	29	59	80	118	155	189	225
250	34	68	100	133	174	211	249
300	39	77	112	149	193	233	275
350	44	85	124	164	212	256	301
400	48	93	135	178	230	276	324
500	57	109	156	205	264	316	370
600	67	125	179	232	298	356	415
700	74	139	199	256	328	391	456
800	84	155	220	283	362	430	499
900	93	170	241	309	395	468	543
1000	102	186	262	335	428	506	586
Криволинейные	Н	ормы	поверх	кностн	юй пл	отност	ги
поверхности		тег	ЛОВОГ	о пото	ка, Вт	/m2	
диаметром облее 1020 мм и плоские	29	50	68	83	104	119	134

- 1. При расположении изолируемых поверхностей в тоннеле к нормам плотности следует вводить коэффициент 0,85;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Таблица В.29. Нормы плотности теплового потока при расположении в помещении и тоннеле и продолжительности часов работы в год 5000 и менее

Условный проход трубопровода, мм	Средняя температура теплоносителя, °С								
	50	100	150	200	250	300	350		
		Норм	ы лин	ейной	плот	ности			
		теп	ловог	о пото	ока, B ^r	г/м			
15	9	20	31	44	57	72	87		
20	10	22	35	49	64	80	97		
25	11	25	39	54	70	87	106		
40	13	29	46	64	83	103	124		
50	15	32	49	68	89	110	132		
65	17	37	57	78	101	124	149		
80	20	41	62	84	108	133	160		
100	22	45	69	93	119	146	175		
125	25	51	77	102	135	165	196		
150	28	56	85	114	149	181	215		
200	36	70	103	137	179	216	256		
250	42	81	118	155	201	242	287		
300	48	92	133	174	225	271	319		
350	53	103	147	193	248	299	350		
400	60	113	162	210	269	324	379		
500	71	132	183	243	314	373	435		
600	81	152	215	277	357	423	492		
700	91	170	239	309	394	467	541		
800	102	190	265	342	436	515	596		
900	114	209	292	375	478	563	650		
1000	125	229	318	408	519	611	704		
Криволинейные поверхности	Нормы поверхностной плотности теплового потока, Вт/м2								
диаметром более 1020 мм и плоские	36	63	85	105	132	151	170		

Примечание

 (\mathbf{r})

- 1. При расположении изолируемых поверхностей в тоннеле к нормам плотности следует вводить коэффициент 0,85;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Услов	ныйа	рdК											
в, мм				Расч	етная	темп	ерату	ра теп	лонос	ителя	,°C		
		115	100	150	100	200	100	250	100	300	100	350	100
25	25	28	22	36	22	49	22	61	22	77	22	85	22
30	25	29	22	38	22	52	22	65	22	83	22	100	22
40	25	31	22	40	22	54	22	70	22	88	22	105	22
50	25	34	22	43	22	62	22	77	22	95	22	113	22
65	30	38	25	51	25	70	25	85	25	105	25	124	24
80	40	44	27	55	27	74	26	90	26	110	26	130	25
100	40	47	27	59	27	79	26	97	26	118	26	140	25
125	50	52	29	64	29	86	28	105	28	128	28	151	28
150	70	56	33	69	32	93	31	113	31	138	31	170	31
200	80	65	35	81	35	107	34	130	34	157	34	184	34
250	100	73	38	90	38	119	37	143	37	176	37	206	37
300	125	80	41	100	40	132	40	159	40	191	40	223	40
350	150	88	46	108	45	142	45	171	44	205	44	240	44
400	180	94	51	115	50	152	50	183	49	219	49	255	49
450	200	101	54	124	53	161	53	194	53	232	52	269	52
500	250	108	61	132	60	171	59	207	59	248	59	287	58

Таблица В.30. Нормы плотности теплового потока через поверхность изоляции паропроводов с конденсатопроводами при их совместной прокладке в непроходных каналах, Вт/м

Примечание

Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.31. Нормы плотности теплового потока через поверхность изоляции трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах при продолжительности часов работы в год 5000 и менее, Вт/м

Условный проход	Трубопровод					
трубопровода, мм	Подающий	ОбратныйГ	одающик	юбратный	Подающий	Обратный
	Среднегодовая температура теплоносителя, ° С			, ,		
	65	50	90	50	110	50
25	18	12	26	11	31	10
30	19	13	27	12	33	11
40	21	14	29	13	36	12
50	22	15	33	14	40	13

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Условный проход	Трубопровод						
трубопровода, мм	Подающий	ОбратныйГ	одающик	Юбратный	Подающий	Обратный	
	(Среднегодов	ая темпера	тура теплон	юсителя, ° С		
	65	50	90	50	110	50	
65	27	19	38	16	47	14	
80	29	20	41	17	51	15	
100	33	22	46	19	57	17	
125	34	23	49	20	61	18	
150	38	26	54	22	65	19	
200	48	31	66	66 26	83	23	
250	54	35	76	29	93	25	
300	62	40	87	32	103	28	
350	68	44	93	34	117	29	
400	76	47	109	37	123	30	
450	77	49	112	39	135	32	
500	88	54	126	43	167	33	
600	98	58	140	45	171	35	
700	107	63	163	47	185	38	
800	130	72	181	48	213	42	
900	138	75	190	57	234	44	
1000	152	78	199	59	249	49	
1200	185	86	257	66	300	54	
1400	204	90	284	69	322	58	

Ŧ

Примечание

- Расчетные среднегодовые температуры воды в водяных тепловых сетях 65; 90; 110 °C соответствуют температурным графикам 95-70 C; 150-70; 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.32. Нормы плотности теплового потока через поверхность изоляции трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах при продолжительности часов работы в год более 5000, Вт/м

Условный проход	Трубопровод					
трубопровода, мм	Подающий	ОбратныйГ	одающик	Юбратный	Подающий	Обратный
	Среднегодовая температура теплоносителя, ° С					
	65	50	90	50	110	50
25	16	11	23	10	28	9

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА З. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

Условный проход	ловный проход Трубопровод						
трубопровода, мм	Подающий	ОбратныйГ	одающик	Юбратный	Подающий	Обратный	
	(Среднегодов	ая темпера	тура теплон	юсителя, ° С		
	65 50 90 50 110 50						
30	17	12	24	11	30	10	
40	18	13	26	12	32	11	
50	20	14	28	13	35	12	
65	23	16	34	15	40	13	
80	25	17	36	16	44	14	
100	28	19	41	17	48	15	
125	31	21	42	18	50	16	
150	32	22	44	19	55	17	
200	39	27	54	22	68	21	
250	45	30	64	25	77	23	
300	50	33	70	28	84	25	
350	55	37	75	30	94	26	
400	58	38	82	33	101	28	
450	67	43	93	36	107	29	
500	68	44	98	38	117	32	
600	79	50	109	41	132	34	
700	89	55	126	43	151	37	
800	100	60	140	45	163	40	
900	106	66	151	54	186	43	
1000	117	71	158	57	192	47	
1200	144	79	185	64	229	52	
1400	152	82	210	68	252	56	

Примечание

- Расчетные среднегодовые температуры воды в водяных тепловых сетях 65; 90; 110 °C соответствуют температурным графикам 95-70 C; 150-70; 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.33. Нормы плотности теплового потока через поверхность изоляции трубопроводов при двухтрубной подземной безканальной

прокладке водяных тепловых сетей при продолжительности часов работы в год 5000 и менее, Вт/м

Условный проход	Трубопровод					
трубопровода, мм	Подающий	Обратный	Подающикй	Обратный		
	Средн	егодовая темпера	тура теплоносите	сля, ° С		
	65	50	90	50		
25	36	27	48	26		
50	44	34	60	32		
65	50	38	67	36		
80	51	39	69	37		
100	55	42	74	40		
125	61	46	81	44		
150	69	52	91	49		
200	77	59	101	54		
250	83	63	111	59		
300	91	69	122	64		
350	101	75	133	69		
400	108	80	140	73		
450	116	86	151	78		
500	123	91	163	83		
600	140	103	186	94		
700	156	112	203	100		
800	169	112	226	109		

Ŧ

Примечание

- 1. Промежуточные значения норм плотности теплового потока необходимо определять интерполяцией;
- 2. Расчетные среднегодовые температуры воды в водяных сетях 65, 90 ° C соответствуют температурным графикам 95-70, 150-70 ° C;
- 3. При применении в качестве теплоизоляционного покрытия пенополиуретана, фенольного поропласта ФЛ, полимербетона значение норм плотности необходимо определять с учетом коэффициента К2, указанного в табл. Д.2.10 этого приложения..

Таблица В.34. Нормы плотности теплового потока через поверхность изоляции трубопроводов при двухтрубной подземной безканальной

Условный проход	Трубопровод					
трубопровода, мм	Подающий	Обратный	Подающий	Обратный		
	Среднег	одовая темпера	гура теплоноси	геля, ° С		
	65	50	90	50		
25	33	25	44	24		
50	40	31	54	29		
65	45	34	60	33		
80	46	35	61	34		
100	49	38	65	35		
125	53	41	72	39		
150	60	46	80	43		
200	66	50	89	48		
250	72	55	96	51		
300	79	59	105	56		
350	86	65	113	60		
400	91	68	121	63		
450	97	72	129	67		
500	105	78	138	72		
600	117	87	156	80		
700	126	93	170	86		
800	140	102	186	93		

(F

- 1. Промежуточные значения норм плотности теплового потока необходимо определять интерполяцией;
- 2. Расчетные среднегодовые температуры воды в водяных сетях 65, 90 ° C соответствуют температурным графикам 95-70, 150-70 ° C;
- 3. При применении в качестве теплоизоляционного покрытия пенополиуретана, фенольного поропласта ФЛ, полимербетона значение норм плотности необходимо определять с учетом коэффициента К2 см. "Коэффициент К2, учитывающий изменение норм плотности теплового потока при применении теплоизоляции...".

плотности теплового потока при применении теплоизоляционного слоя из пенополиуретана, полимербетона, фенольного поропласта ФЛ

Материал	Условный проход трубопровода, мм				
теплоизоляционного слоя	25-65	89-150	200-300	350-500	
	Коэффициент К2				
пенополиуретан, фенольный поропласт	0,5	0,6	0,7	0,8	
полимербетон	0,7	0,8	0,9	1	

Примечание к таблицам.

Уточненные расчеты потерь теплоты в тепловых сетях рекомендуется выполнять по

_{φορмуле:}
$$Q = q_n \cdot l \cdot \beta \cdot 10^{-6} \cdot \tau \cdot 3,6$$

Где Q - потери теплоты, ГДж в год;

 q_n -норма тепловых потерь, Вт/м;

]- протяженность трубопроводов, м;

β - коэффициент, который учитывает потерю теплоты опорами, арматурой и компенсаторами, и принимается при безканальной прокладке- 1,15; в туннелях и каналах- 1,2; при надземной прокладке- 1,25.

Приложение С. Технические характеристики стальных трубопроводов для тепловой сети

N п.п	Диамет	аметр трубопровода , мм		Толщина стенки трубы , мм
	условный	наружный	внутренний	
1	15	18	14	2,0
2	20	25	21	2,0
3	25	32	27	2,5
4	32	38	33	2,5
5	40	45	40	2,5
6	50	57	50	3,5
7	70	76	69	3,5
8	80	89	82	3,5
9	100	108	100	4,0
10	125	133	125	4,0
11	150	159	150	4,5
12	175	194	184	5,0
13	200	219	207	6,0
14	250	273	259	7,0
15	300	325	309	8,0
16	350	377	359	9,0
17	350	377	357	10,0
18	400	426	414	6,0
19	400	426	408	9,9
20	450	480	468	6,0
21	450	480	466	8,0
22	500	529	517	6,0
23	500	529	515	7,0
24	600	630	616	7,0
25	600	630	614	8,0
26	700	720	706	7,0
27	700	720	704	8,0
28	700	720	702	9,0
29	800	820	804	8,0
30	900	920	902	9,0
31	1000	1020	1000	10,0
32	1200	1220	1198	11,0

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

N п.п	Диаметр трубопровода , мм			Толщина стенки трубы , мм
	условный	наружный	внутренний	
33	1200	1220	1192	14,0
34	1400	1420	1398	11,0
35	1400	1420	1392	14,0

Условный проход труб $D_{\rm y}$ независимо от расчетного расхода теплоносителя должен приниматься в тепловых сетях не менее 32 мм.

Приложение D. Коэффициенты местных сопротивлений на участке трубопровода

N п.п.	Местное сопротивление	Коэффициент местного сопротивления
1	Задвижка	0.5
2	Вентиль с косым шпинделем	0.5
3	Вентиль с вертикальным шпинделем	6.0
4	Обратный клапан нормальный	7.0
5	Обратный клапан «захлопка»	3.0
6	Кран проходной	2
7	Компенсатор однолинзовый без рубашки	1.6 - 0.5
8	Компенсатор однолинзовый с рубашкой	0.1
9	Компенсатор сальниковый	0.3
10	Компенсатор П-образный	2.8
11	Отводы, гнутые под углом 90°	-
12	со складками R=3d	0.8
13	со складками R=4d	0.5
14	гладкие R=1d	1.0
15	гладкие R=3d	0.5
16	гладкие R=4d	0.3
17	Отводы сварные одношовные под	-
18	углом 30°	0.2
19	углом 45°	0.3
20	углом 60°	0.7
21	Отводы сварные двухшовные	-
22	под углом 90°	0.6
23	то же, трехшовные	0.5
24	Тройник при слиянии потока:	-
25	проход	1.2
26	ответвление	1.8
27	Тройник при разветвлении потока:	-

N п.п.	Местное сопротивление	Коэффициент местного сопротивления
28	проход	1.0
29	ответвление	1.5
30	Тройник при встречном потоке	3.0
31	Внезапное расширение	1.0
32	Внезапное сужение	0.5
33	Грязевик	10

Приложение Е. Основные типы сборных железобетонных каналов для тепловой сети

N п.п.		Марна ій	Размеры	l	Размеры канала наружные,		
	Д	ткамалр руб,	к		ММ		
	М	М	ширина	высота	ширина	высота	
1	2	56-5 060-30	600	300	850	440	
2	7	05-3 060-45	600	450	850	600	
3	1	BOH19500- 45	900	450	1150	630	
4	1	BOH1500- 60	600	600	850	750	
5	1	1K5H2900- 60	900	600	1150	780	
6	2	BOH3D2 0-60	1200	600	1450	780	
7	3	507405 0-60	1500	600	1800	850	
8	3	50H4201 00-60	2100	600	2400	890	
9	4	5075090 -90	900	900	1060	1070	
10	4	50H50H2 0-90	1200	900	1400	1070	
11	4	KOH501050-90	1500	900	1740	1070	
12	6	BOC 120-120	1200	1200	1400	1370	
13	7	COC 210-120	2100	1200	2380	1470	
14	8	BOC 300-150	3000	1500	3610	1950	
15	9	BOC 360-180	3600	1800	4300	2280	
16	1	000 420-210	4200	2100	4940	2640	
17	6	BOHZOD2 0-120	1200	1200	1400	1370	
18	6	BOHZOD 50-120	1500	1200	1740	1470	
19	6	BOHZORI 0-120	2100	1200	2380	1470	
20	4	50C-8900- 90	900	900	1380	1090	
21	4	50 C8020-90	1200	900	1680	1090	
22	4	50C8900 -120	900	1200	1380	1390	
23	4	500 -8050-90	1500	900	1980	1110	
24	4	500E820100-90	2100	900	2580	1180	
25	5	0€F70 KM-I	750	410	890	570	
26	8	Ƙ-⊞5KIM-II	1000	510	1140	690	
27	2	BCH2E01-III	1250	650	1390	830	
28	3	₿CH3K0 ∕I-IV	1500	810	1640	990	
29	4	ФОНЖМ-V	1600	910	1740	1090	
30	4	5K0H5680M-VI	2100	1100	2260	1330	

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» НА ПЕРИОД 2016-2031 ГГ. ГЛАВА 3. ЭЛЕКТРОННАЯ МОДЕЛЬ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ МО «РАЗДОЛЬНЕНСКИЙ РАЙОН» ПРИЛОЖЕНИЕ 4. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ZULU THERMO

 N п.п.	Марна ій д т канелр		Размеры канала внутренние, мм		Размеры канала наружные, мм	
	М	руб, м	ширина	высота	ширина	высота
31	6	ФС НЖМ-VII	2800	1250	3080	1570